
Towards a Generic Multilingual Dependency Grammar
for Text Generation

François Lareau and Leo Wanner
Pompeu Fabra University Pompeu Fabra University

and ICREA

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/



Abstract

For practical multilingual text generation, efficient development and rep-
resentation of large scale grammatical and lexical resources are crucial. One
way to ensure efficiency is to share as much resources as possible between
languages. We present some preliminary work on shared grammatical re-
source development within the framework of the Meaning-Text Theory, em-
phasizing the lexicalist point of view. We show that rich dictionaries allow
for more generic grammar rules which can be used for several languages, so
that the number of language-specific rules is kept low. We also discuss the
benefits of shifting the workload to the dictionaries from the viewpoint of
extension and consistency control as well as the impact it has on the organ-
ization of work. Evaluation of the developed shared grammatical resources
constitutes another topic of the article.

1 Introduction

Practical multilingual natural language generation (MNLG) cannot be achieved
without large scale grammatical and lexical resources. In order to keep the time
and human resources for their development and later on, during generation, the
computational effort of their application acceptable, efficiency with respect to both
resource development and resource representation is essential.

For an efficient development of multilingual broad coverage grammatical re-
sources, two different strategies have been applied: grammar porting (Alshawi,
1992; Kim et al., 2003) and grammar sharing (Avgustinova and Uszkoreit, 2000;
Bateman et al., 2005; Santaholma, 2007). In this article, we present some pre-
liminary work on the development of shared grammatical MNLG resources in the
framework of the dependency-based Meaning-Text Theory, MTT (Mel’čuk, 1988).
MTT has traditionally been popular in text generation due to its multi-stratal lin-
guistic model, which allows, on the one hand, to select for the input structure a
degree of abstraction that suits best the application in question, and, on the other
hand, to keep the generation resources as modular and as simple as possible.

According to MTT, sentence generation is viewed as a sequence of transduc-
tions between structures of adjacent strata. Depending on the required degree
of abstraction, generators may start from the conceptual, semantic, or syntactic
structure (see also below). Each transduction is realized by a separate language-
dependent grammar such that grammar developers are faced with the task of de-
veloping n× (m− 1) grammars for each application (with n being the number of
languages covered and m the number of strata involved in the generation process).
The need for efficient sharing of grammatical resources across languages is thus
obvious.

In our current application, we cover six languages (Catalan, English, French,
Polish, Portuguese, and Spanish) for the domain of air quality, using as develop-
ment framework and generator the graph grammar-based workbench MATE (Bo-
hnet et al., 2000; Bohnet, 2006). It turned out that the effect of resource sharing



even across languages that belong to different families (Romance, Germanic, and
Slavic) is considerable. In what follows, we present our experience.

The remainder of the article is structured as follows. In Section 2, we give a
short introduction to MTT. Section 3 describes the formalism used for the diction-
aries and grammars in MATE. Section 4 contains the general principles that under-
lie our grammatical resource architecture. In Section 5, we assess the benefits of
this architecture for efficient grammar development, before presenting in Section 6
an evaluation of the resources thus obtained. Section 7, finally, summarizes the
central aspects of our approach and offers some conclusions.

2 Overview of MTT

As already mentioned above, MTT is based on a multi-stratal linguistic model.
In total, seven different strata are distinguished, of which five are immediately
relevant to written language generation: (i) the semantic stratum, (ii) the deep-
syntactic stratum, (iii) the surface-syntactic stratum, (iv) the deep-morphological
stratum,1 and (v) the surface-morphological stratum. For generation applications
that start from a non-linguistic content representation or even from numerical data
series (as we do), an additional conceptual stratum is added.

The structures at each stratum are defined over an own alphabet, with an own,
distinct, interpretation. Thus, conceptual structures (ConS) are conceptual graphs
in the sense of Sowa (2000). Semantic structures (SemS) are predicate-argument
graphs with nodes labeled by semantemes and arcs labeled by the ordinal num-
bers of the argument relations (ordered in ascending degree of obliquity). Deep-
syntactic structures (DSyntS) are dependency trees with nodes labeled by “deep”
lexical units (LUs)2 and arcs labeled by universal syntactic relations: actantial (I, II,
III, . . . ), attributive (ATTR), and coordinative (COORD). Surface-syntactic struc-
tures (SSyntS) are dependency trees with nodes labeled by any kind of lexeme
(including closed class lexemes) and arcs labeled by grammatical functions (sub-
ject, direct object, . . . ); SSyntS is thus equivalent to the f-structure in LFG. Deep-
morphological structures (DMorphS) are chains of lemmas annotated with all rel-
evant morpho-syntactic features. Surface-morphological structures (SMorphS) are
similar to DMorphS except that contractions, elisions, epenthesis and morph amal-
gamation have been performed. Figure 1 illustrates the first five types of structures
for the sentence This means that the air quality is very poor; the SMorphS is obvi-
ous and does not need explicit illustration.

For each pair of adjacent strata Si and Si+1, a separate grammar module Gi
i+1

is defined such that any well-formed structure Sij of Si can be mapped by Gi
i+1

1In the MTT literature, the deep-morphological stratum has recently also been referred to as
“Topological Stratum” (Gerdes and Kahane, 2007).

2The set of deep LUs of a language L contains all LUs of L—with some specific additions and
exclusions. Added are two types of “artificial” LUs: (i) symbols of lexical functions (Mel’čuk, 1996),
(ii) fictitious lexemes, which represent idiosyncratic syntactic constructions of L. Excluded are: (i)
structural words, (ii) substitute pronouns and values of lexical functions.



con:AQ_index
type:index

con: AQ_eval
type: evaluationOBJ

VAL RSLT

con: 6
type: number

con: very_poor
type: mark

MEAN

THIS1 FUNC2

QUALITY POOR

MAGNAIR

I II

I II

I ATTR

quality

air

1
poor2

1

Magn

quality:2
1

1

air:2

index
2

"6"

1 2
mean

QUALITY
compound

AIRTHE

determinative

VERY

POOR
modificative

BE
subjective copulative

THAT
conj copulative

THIS1

MEAN
d_objectivesubjective

2. Semantic Structure

4. Surface!Syntactic Structure

this<PRO.SUB>

very b poor b "."

b
the b air<SG> b quality<SG>
b

N S
INTERPRETATION

1. Conceptual Structure

3. Deep!Syntactic Structure

be<V.IND.PRES.SG.3> b

thatmean<V.IND.PRES.SG.3> b
b

5. Deep!Morphological Structure

Figure 1: Sample structures at different strata of an MTT model

onto a well-formed structure Si+1k
of Si+1, with Sij and Si+1k

being equivalent
with respect to their meaning. For convenience, we introduce a further grammar
module to map a SMorphS onto a text string. As a rule, the mapping requires access
to dictionaries containing information concerning the units of Sij and Si+1k

.

3 Formal Framework: MATE

The MATE workbench consists of a number of support modules for the develop-
ment of dictionaries and grammars and a transduction-based generator that maps
any automatically derived or manually specified input structure Sij of the stratum
Si onto its equivalent structure Si+1k

of the stratum Si+1 by applying the corres-
ponding grammar module Gi

i+1 to Sij under the use of dictionaries.



3.1 Dictionary Encoding in MATE

Dictionaries contain two types of information: (i) information concerning the ele-
ments of the different node alphabets (the vocabulary) and (ii) information con-
cerning the correspondence between elements of node alphabets of adjacent strata.
Therefore, three main dictionaries are available: a conceptual dictionary, a se-
mantic dictionary and a lexical dictionary. All are organized in terms of (embed-
ded) feature-value structures.

The conceptual dictionary is used, first of all, to encode concept-semanteme
mapping information; cf. a simplified entry for the concept CONCENTRATION:3

concentration: property_attribute {
sem = ‘concentration’
MATR = {relation = 1 target=referent}
VAL = {relation = 2 target=referent}
ATTR = {relation = 1 source=referent}}

The concept CONCENTRATION has two argument slots: something which
has a concentration (referred to as MATR in accordance with Sowa (2000)), and
a value (referred to as VAL), i.e., an absolute concentration figure. The concept
may also be modified by a qualitative characterization of the concentration (“high”,
“low”, etc.), referred to as ATTR. The corresponding semanteme ‘concentration’
takes MATR as its first semantic argument (indicated by the “relation=1” para-
meter embedded in MATR’s value) and VAL as its second. The attributes “tar-
get=referent” and “source=referent” indicate the direction of the semantic rela-
tion (for MATR and VAL, the semantic predicate is ‘concentration’, which takes
MATR’s and VAL’s corresponding semantemes as its arguments, while ATTR’s
semantic correspondent is a predicate taking ‘concentration’ as its argument).

The semantic dictionary gives, for every semanteme described, all its possible
lexicalisations. For instance, the meaning ‘cause’ would be mapped to the LUs
CAUSE[V], CAUSE[N], RESULT[V], RESULT[N], DUE, BECAUSE, CONSEQUENCE,
etc. Note that we do not consider at this stage the valency of the LUs. Thus, it
does not matter that X causes Y means that Y results from X; what interests us
here is only that these two lexemes can both be used to denote the same situation,
regardless of the communicative orientation. Cf., for illustration, the entry for the
semanteme ‘concentration’ as specified in the semantic dictionary:

concentration {
label = parameter
lex = concentration }

The semantic type of a semanteme can be specified in the semantic dictionary
(cf. “label=parameter”). It is also possible to specify the semantic type of the argu-
ments of a predicate. For instance, adding the attribute “1=substance” here would
force the first semantic argument of ‘concentration’ to be of type “substance”.

3More information can be added to this basic entry, but we leave it aside in this paper.



The lexical dictionary contains, for each LU, at least, information on its part
of speech and minimal sub-categorization information. For more elaborate gener-
ation, the whole variety of sub-categorization patterns and lexical co-occurrence
information should also be captured. The latter is specified in terms of lexical
functions.4 Consider, for illustration, the entry for CONCENTRATION:

concentration {
// Grammatical characteristics:
dpos = N // deep part of speech is N(oun)
spos = common_noun // surface part of speech is common noun
// Government pattern (subcategorization):
gp = {

// Sem-DSynt valency projection (1⇒I, 2⇒II):
1 = I // first semantic actant is first deep-syntactic actant
2 = II // second semantic actant is second deep-syntactic actant
// First syntactic actant can be realized as "ozone concentration":
I = {

dpos=N // actant is a noun
rel=compound // linked with compound relation
det=no // takes no determiner

}
// First syntactic actant can be realized as "concentration of ozone":
I = {
dpos=N // actant is a noun
rel=noun_completive // linked with noun_completive relation
prep=to // takes preposition "to"
det=no // takes no determiner

}
// Second syntactic actant can be realized as "concentration of 180 µg/m3":
II = {

dpos=Num // actant is a number
rel=noun_completive // linked with noun_completive relation
prep=of // takes preposition "of"

}
}
// Lexical functions:
Magn = high
AntiMagn = low
Adv1 = in // "(we found) ozone in a concentration (of 180 µg/m3)"
Func2 = be // "the concentration (of ozone) is 180 µg/m3"
Oper1 = have // "ozone has a concentration (of 180 µg/m3)"
IncepFunc2 = reach // "the concentration (of ozone) reached 180 µg/m3"
IncepOper1 = reach // "ozone will reach a concentration (of 180 µg/m3)"

}

4A lexical function (Mel’čuk, 1996) is a directed lexico-semantic relation between two LUs that
form a semi-idiomatic expression (e.g. heavy smoker, make a statement, etc.). When applied as a
function to the semantic head of the expression, it provides the second element. There is a specific
(simple or complex) lexical function for each recurrent co-occurrence pattern in language.



We use two levels of granularity for the part of speech, referred to as deep and
surface part of speech (resp. dpos and spos). This allows for quick reference to a
whole family of parts of speech in grammar rules (for example, “N” refers to any
proper noun, common noun, or pronoun). All specific grammatical characteristics
of an LU would be described here as a feature-value pair (for example, its gender
or its ability to take or not plural, definiteness, a certain tense, etc.).

The sub-categorization must contain the projection of the semantic to the syn-
tactic valency and all possible ways of syntactically connecting the LU with its
dependents. Governed prepositions must be indicated here, as well as case assign-
ment if it exists in the language being described. One can optionally restrict the
part of speech of the dependents (for instance, the first actant of CONCENTRATION

must be a noun, while its second must be a number).
As mentioned above, lexical functions are an efficient way of referring to recur-

rent semantic and syntactic patterns of restricted lexical co-occurrence. In the ex-
ample above, Magn points to an LU which is a syntactic modifier and has a mean-
ing of intensification (AntiMagn is its antonym). The function Func2 refers to
a semantically emptied verb that takes the keyword (CONCENTRATION) as its sub-
ject and the keyword’s second semantic actant as its object. IncepOper1 points to
a verb meaning roughly ‘start’ which takes the keyword as its object and the first
actant of the keyword as its subject. The more information on restricted lexical
co-occurrence the lexical dictionary contains, the more natural and idiomatic the
generated text will feel.

MATE lets the user define as many dictionaries as necessary. We have presen-
ted the three main ones we have in our resources, but there can be more. For in-
stance, it is possible to use a full-form dictionary instead of a proper morphological
model (we did actually use a hybrid method). We also had a pseudo-dictionary for
each language where we stored information such as the name of the language, the
branch/family it belongs to, its being a “pro-drop language” or not, etc.

3.2 Grammar Encoding in MATE

A grammar Gi
i+1 consists of a set of minimal grammar rules of the following gen-

eral format (see (Bohnet, 2006, 39ff) for details):

leftside (ls): <gi >
rightside (rs): <gi+1 >
rightcontext (rc): <g′

i+1 >
conditions (cd): <Boolean expr. over Dconc ∪Dsem ∪Dlex ∪Si ∪Si+1

correspondences (cr): {nij ⇔ ni+1k
}

with gi being a graph defined over the node and arc alphabets of Si, gi+1 and g′
i+1

being defined over the node and arc alphabets of Si+1; Dconc, Dsem, Dlex being
the conceptual, semantic and lexical dictionaries; and nij ∈ gi, ni+1k

∈ gi+1.
The application of a rule consists in the identification of an isomorphic image of



gi in a given source structure Sij and subsequent introduction of an isomorphic
image of gi+1 in the target structure Si+1k

, which is under construction. The state-
ment ‘nij ⇔ ni+1k

’ establishes a link between corresponding nodes in Sij and
Si+1k

in order to ensure that (i)information can be propagated from node to node
across strata, (ii) the isolated fragments of the target structure as introduced by the
individual rules can be unified to a connected well-formed structure. A rule is ap-
plicable if the specified conditions are fulfilled. As indicated, conditions may be
defined over all dictionaries and both strata.5

The rules in Gi
i+1 are minimal in the sense that the left-hand side of each rule

is maximally elementary from the linguistic perspective.
Consider sample rules for the first four types of transduction involved in MTT-

based generation; the rules of the DMorph⇒ SMorph and SMorph⇒ Text trans-
ductions are less interesting since they simply spell out morphological features of
the words and pass the strings to an external morphological model.

Rule 1 (Sample Con⇒ Sem rule)

ls: ?Xcon{PTIM->?T{con="tomorrow"}}
rc: ?Xsem{tense=FUT}
cr: ?Xcon ⇔ ?Xsem

Rule 1 maps the conceptual time relation between the concept denoted by the
variable ‘?Xcon’ and the “universal”6 concept TOMORROW onto the tense feature
“FUT” of the semanteme denoted by the variable ‘?Xsem’. Note that ‘?Xsem’ is
specified in the right context slot—which means that the corresponding semanteme
is assumed to have been already introduced into the target structure by another rule.

Rule 2 (Sample Sem⇒ DSynt rule)

ls: ?Xsem{?r->?Ysem}
rs: ?Xds{I->?Yds}
rc: ?Xds
cr: ?Xsem ⇔ ?Xds

?Ysem ⇔ ?Yds
cd: lexicon::(?Xds.lex).(gp).(?r)=I

Rule 2 maps any semantic relation (denoted by the variable ‘?r’) of the se-
manteme denoted by ‘?Xsem’ onto the first deep syntactic actant of the corres-
ponding LU (denoted by ‘?Xds’). The node ‘?Xds’ being also in the right context
slot, must be already present in the target structure. This rule has a condition that
accesses a dictionary called “lexicon” (which is the lexical dictionary introduced in

5As a matter of fact, the conditions may also draw on the context, the discourse structure, the user
model, etc. However, for simplicity’s sake, we neglect this issue here.

6It is not absolutely true that all concepts are universal; some could be said “culture-specific”. For
instance, periods of the day vary considerably from one culture to another. In Spain, for example,
the afternoon does not start before 3PM, while in Germany it starts as early as 12:00. We leave this
problem aside as it is beyond the scope of this paper.



Section 3.1). It searches for the entry that corresponds to the lexicalisation on the
node ‘?Xds’ and browses its attributes to verify that the projection of the semantic
to the syntactic valency of the LU is such that the semantic relation ‘?r’ is mapped
to the deep-syntactic relation ‘I’. For instance, this rule would apply to the first
semantic argument of ‘concentration’ (cf. the sub-categorization for CONCENTRA-
TION in Section 3.1). This rule can be further refined to handle any deep-syntactic
actantial relation and to retrieve more information from the dictionary, such as
grammatical features imposed to the actant by its governor (part of speech, mood,
definiteness, etc.). For the sake of clarity, we shall consider only this simplified
version.

Rule 3 (Sample DSynt⇒ SSynt rule)

ls: ?Xds{dpos=V; finiteness=FIN; mood=IND; tense=FUT}
rs: ?Yss{slex=will

dpos=lexicon::(will).dpos
spos=lexicon::(will).spos
tense=PRES
finiteness=?Xds.finiteness; mood=?Xds.mood
aux_completive->?Xss{finiteness=INF}

rc: ?Xss
cr: ?Xds ⇔ ?Yss

?Xds ⇔ ?Xss
cd: language::(id).(iso)=ENG

Rule 3 introduces for an English verbal LU (denoted by ‘?Xds’) that carries in
the DSyntS the grammemes FIN, IND, and FUT the auxiliary WILL. WILL inherits
from ?Xds the grammemes of finiteness and mood, but not of tense—which is for
WILL PRES(ent). Note that in this case, one deep-syntactic node corresponds to
two surface-syntactic nodes.

Rule 4 (Sample SSynt⇒ Top rule)

ls: ?Xss{dpos=V
subj-> ?Yss
?r-> ?Zss}

rc: ?Ytp{b-> rc:?Ztp}
cr: ?Ytp ⇔ ?Yss

?Ztp ⇔ ?Zss
cd: not ?r=circumstancial

Rule 4 defines the relative ordering between the subject (‘?Yss’) of a verbal
lexeme (‘?Xss’) and any other dependent of the verb (‘?Zss’): the subject goes
before. The circumstantials are excluded since they may come before the subject.



4 Principles of Grammatical Resource Development

The sample rules cited above for illustration already give a hint that writing and
maintaining comprehensive MTT-based generation grammar modules is a complex
and very costly task—in particular, if the generation is to be multilingual.

To achieve the maximal efficiency possible, we adopt the following guidelines
when organizing the grammatical resources:

(a) extracting recurrent core rule patterns across languages and factorizing them
out into a “meta-grammar”,

(b) modularizing language-specific rules,

(c) shifting the load of the grammarian’s work to the lexicon,

(d) generalizing recurrent lexical patterns and introducing an inheritance mech-
anism.

Let us discuss the application of each of these guidelines in practice.

4.1 Sharing Core Grammar Components Across Languages

When developing grammatical resources for several languages in parallel, one
quickly finds that many of the rules are the same in more than one language—to the
point that some are identical for all languages under consideration. For instance,
Rule 2 mentioned in Section 3.2 would apply no matter whether the language is
Catalan, English, French, Polish, Portuguese or Spanish. It makes no reference
to any specific LU, nor does it refer to any language-specific relation (semantic
and deep-syntactic relations being universal by definition). In that sense, it is a
“universal” rule in our system. However, we do not claim that our resources con-
tain even one single rule that could be applied in any possible language. Although
Rule 2 seems a good candidate to universality (since it merely activates lexical in-
formation), consider for instance Rule 4 in Section 3.2. This rule also applies to
all the languages we considered in our application (even supposedly “free-order”
Polish looked better when the subject came first for the texts we had to generate).
However, it is clear that it cannot apply to all known languages.7

In contrast with these two generic rules, Rule 3 given in Section 3.2 is only
valid for English. It refers to a specific lexeme (WILL) and it even explicitly re-
quires that the ISO identification code of the language being currently processed
be “ENG” (see the note on the pseudo-dictionary for languages in Section 3.1).

Between these two extremes, it is possible to have rules that apply for a family
(or any arbitrary set) of languages. For example, consider noun-determiner agree-
ment. It does not exist in English nor in Polish. However, it is functionally the same
in all Romance languages under consideration (the determiner agrees in gender and

7Cf., e.g., the order in relative clauses in German.



number with its governing noun). It is therefore possible to have only one rule for
all those languages (cf. Rule 5).

Rule 5 (An SSynt⇒ DMorph agreement rule for Romance languages)

ls: ?Xss{dpos=N
det->?Yss}

rc: ?Ytp{gender=?Xss.gender
number=?Xss.number}

cr: ?Xtp ⇔ ?Xss
?Ytp ⇔ ?Yss

cd: language::(id).(family)=romance

The general principle is to minimize the number of language-specific rules
(such as Rule 3) and maximize the number of generic rules. The degree of gen-
eralization one can achieve for a module depends on the language and the strata
involved. Languages that have agreement or a lot of lexical markers for gram-
matical meanings (articles, auxiliaries, etc.) require more language-specific rules.
Table 1 shows, for each module in our system, the number of generic and language-
specific rules we have (the column Avg gives the average number of specific rules
for all languages).

Table 1: Number of generic and specific rules per module and language

Module Core CT EN ES FR PL PT Avg
Con⇒ Sem 50 0 0 0 0 0 0 0
Sem⇒ DSynt 59 8 8 7 7 11 6 8
DSynt⇒ SSynt 64 13 16 11 16 7 12 13
SSynt⇒ DMorph 70 13 3 12 19 8 14 12
DMorph⇒ SMorph 7 8 5 6 10 10 6 8
SMorph⇒ Text 12 1 1 1 1 1 1 1

As one can observe from Figure 2, the deeper the strata, the more generic a
module tends to be. The Con ⇒ Sem module is entirely generic, i.e., language-
independent, as it relies on a more or less ad-hoc dictionary where a lot of inform-
ation is hard-coded. We do not consider it as part of our model as such, since it has
to be rewritten for each application,8 while the other modules are intended to be as
domain-independent as possible.

The Sem ⇒ DSynt module has, in average, 12% of language-specific rules
(with figures ranging from 9% for Portuguese to 16% for Polish). Language spe-
cific rules at this level are essentially for handling deep anaphora and some idio-
matic expressions that cannot be captured by standard lexical functions, such as

8We are investigating ways of automating this task.



0%

20%

40%

60%

80%

100%

Con-Sem Sem-
DSynt

DSynt-
SSynt

SSynt-
DMorph

DMorph-
SMorph

SMorph-
Text

Specific Generic

Figure 2: Average generic / language-specific rule ratio by module

in the afternoon in a sentence like In the afternoon, the ozone concentration was
<will be> high, which can be used only if the afternoon in question is already in
the past or has not come yet (but not if it is present). The rest of the rules are
generic and handle deep lexicalisation, syntactic tree building, support verbs de-
scribed via standard lexical functions, quantification, etc. For example, Rule 2 in
Section 3.2 activates the projection of the semantic to the syntactic valency found
in the dictionary for any LU of any language.

The DSynt⇒ SSynt module has an average of a little more than 16% language-
specific rules. This ratio varies considerably from one language to another (from
10% for Polish to 20% for English and French). This is because auxiliaries, art-
icles and all other grammatical words are handled at this level. Thus, languages
with more lexical markers for grammatical meanings will require more specific
rules in this module than languages that tend to express these meanings morpho-
logically. For the treatment of verbal tense and aspect, we have a separate rule for
each possible auxiliary combination (will do, will be doing, will have done, will
have been doing, etc.). It would certainly have been possible to write only one rule
for each auxiliary, with conditions handling the correct composition when more
than one auxiliary is used. As a matter of fact, this would have better followed our
general guidelines for grammar development (we tend to generalize the rules as
much as we can, in order to keep a high maintainability of the resources). Doing
so would have reduced the number of rules necessary for the auxiliaries from 12
to 4 for English. However, it would also have made those four rules significantly
more complex. We preferred keeping a higher number of simpler rules, so that
grammarians with less experience in formal linguistics would easily understand,
maintain and port them to other languages.



The SSynt ⇒ DMorph rules model two main phenomena: word-order and
agreement. Both phenomena vary greatly from one language to another. It is there-
fore a little surprising that we have less than 14% language-specific rules in average
here. We believe that we have somehow been lucky because most of the time, the
best word-order for the texts we had to generate was more or less the same for all
languages considered in this application, including Polish. Obviously, if we had
to generate other kinds of texts or in other languages, we would certainly see the
number of language-specific rules go up for this module. However, the good news
is that word-order rules are among the simplest, so writing and maintaining them
is easy.

The DMorph ⇒ SMorph module shows the highest ratio of language-specific
rules: almost 51% in average (ranging from less than 42% for English to nearly
59% for French and Polish). However, this module contains very few rules (only
12 to 17 rules depending on the language, of which 7 are generic). It prepares the
strings that will be passed to the morphological module (or the full-form diction-
ary), with all grammatical features in the correct order (so that an English finite
verb, for instance, would look like “reach<V><IND><PRES><SG><3>”). Basic-
ally, most language-specific rules of this module only recopy the attributes found
on the nodes at previous levels as explicit codes in the chain that labels the node. It
is a purely technical process that has little linguistic relevance, but the number of
language-specific rules still has a strong correlation with the nature of the language:
the more complex the morphology of the language is, the higher the number of lan-
guage specific rules will be. It is also in this module that operations such as elision
(Fr. le homme→ l’homme), contraction (Eng. does not → doesn’t) and epenthesis
(Pl. w wjezdzie→ we wjezdzie) are computed.

The number of language-specific rules in the SMorph⇒ Text module9 is quite
low (8% for all languages). However, this figure does not reflect any interesting
linguistic fact. This module only manages the final realization of wordforms; it
handles spelling out, capitalization, and so on. The number of rules in this module
is very low (13 only for any language, of which 12 are generic). The only rule
that is language-specific simply calls the appropriate two-level morphology model
or full-form dictionary for the language in question, passing on the string that was
built by the previous module.

Given that in each module we need some language-specific rules, the rules are
sensitive to the language that is being processed. While most can always apply,
some are marked in order to apply (or not to apply) for a given language (or set
of languages). In fact, what we have is a set of rules from which the grammar of
a specific language is a subset. From the point of view of the developer, it can be
seen as a pool of shared rules to which one can “subscribe" for the language he
wants to describe.

9Recall that we use an additional transduction from the SMorphS to text not foreseen in MTT.



4.2 Rule packaging

The rules inside each module are further organized into packages. A package is
a set of rules that work together, or on the contrary, are in competition; it grasps
one specific linguistic phenomenon. For example, in the DSynt⇒ SSynt module,
there are separate packages for idioms, coordination, auxiliaries, etc. Formally, a
package is defined by an abstract rule from which other rules depend. An abstract
rule is always empty, but it may have conditions associated to it, which are inherited
by all the rules that depend from it. A package can be composed of sub-packages. It
is notably the case of the language packages. Language-specific rules are grouped
into a separate package for each language, which consists of a number of sub-
packages for various language-specific phenomena (see Section 4.1 for a list of
such phenomena by module).

In each module, there is a so-called “core” package that contains all the es-
sential rules that are needed for processing any input structure. For instance, the
SSynt⇒ DMorph module’s core rules handle lexicalisation, actantial relations and
the ATTR-relation (for modifiers), without which nothing can be done. Also in this
module are packages for lexical co-occurrence (in particular support verbs), quan-
tification, circumstantials, voice, and language-specific packages (mainly for deep
anaphors). Phenomena that span over more than one module, such as coordination,
have a corresponding package in each module involved.

With this design it is possible to assign different packages to different de-
velopers who are specialists of a specific domain and who need not worry about
the problems outside of their sandbox. It is also easier to modify the grammar to
meet specific needs by choosing the desired modules or by adding in new ones.

So far, we have limited the package-based design to grammars only. Eventu-
ally, we will also adopt the same architecture for the dictionaries. The lexical core
of each language should constitute the main package, while additional packages
could be developed by qualified terminologists for specific domains (air quality,
traffic information, healthcare, etc.).

4.3 Rich Hierarchical Dictionaries

As is customary in many modern grammar theories (among others, HPSG, LFG,
SFG, Word Grammar, etc.) and their implementations, we use inheritance in the
lexical resources, factorizing all possible lexical information into abstract entries
from which the LUs depend. Consider, for illustration, a fragment of the verbal
hierarchy predicate→ verb→ direct transitive verb.

The predicate node provides the default projection of the semantic valency to
the syntactic valency of a predicative unit. We assume that a predicate possesses
at most six actants, with the ith semantic actant (denoted by an Arabic number)
usually corresponding to the ith syntactic actant (denoted by a Roman number):

"predicate" {
gp={ 1=I; 2=II; 3=III; 4=IV; 5=V; 6=VI } }



A verbal lexeme is a predicate (i.e., inherits, if not overridden, all features
defined for the predicate unit). Furthermore, its surface and deep part of speech
are respectively ‘V’ and ‘verb’ and, by default, its first syntactic actant realizes as
a grammatical subject, usually a noun (this can of course be overwritten for any
given verb):

"verb" : "predicate" {
dpos=V; spos=verb
gp={ I= {dpos=N; rel=subj} }

}

Note that this abstract entry is not universal. For each language, we keep a sep-
arate hierarchy since the parts of speech and the morpho-syntactic behavior of their
members can vary cross-linguistically. For example, Polish verbs usually assign
the nominative case to their subject, unless otherwise specified, so this information
would be added to the abstract verb entry for Polish.

English direct transitive verbs inherit from the verb class. Furthermore, they
realize their second syntactic actant as a direct object, and it is by default a noun:

"verb_dt" : "verb" {
gp={ II= {dpos=N; rel=dobj} }

}

Now, adding a direct transitive verb to the lexicon is just a matter of ex-
pressing its membership in the verb_dt class. Consider, for illustration, the entry
for the verb EXCEED below, where we have added information on its lexical co-
occurrence:

exceed : "verb_dt" {
Magn = "by far"
AntiMagn = "a little"

}

All information about the projection of the semantic to the syntactic valency,
part of speech and surface realization of the actants has been inherited. Of course
this information can be overridden, simply by overwriting it. For example, the verb
EXPECT has two possible sub-categorization patterns, none of which corresponds
to the default pattern for verbs:

expect : "verb" {
gp={ II={dpos=V; finiteness=FIN; mood=IND; prep=that} }
gp={ II={dpos=V; finiteness=INF; prep=to; rel=iobj}

raise={ II={rel=dobj} } }
}

The first pattern corresponds to We [=I] expect that the ozone concentration will
increase [=II]. The second pattern points to a subject-raising construction where the
subject of actant II is raised to become the direct object of EXPECT, downgrading
actant II to an indirect object position, as in We [=I] expect the ozone concentra-
tion [=raised subject] to increase [=II].



5 Benefits of the Proposed Grammar Design

The principles outlined above and followed in our work ensure that

(i) no parts of resources are repeated,

(ii) the resources are linguistically sound, and

(iii) the acquisition and maintenance (i.e., evaluation, correction and extension)
of the resources can be carried out easily by grammarians without an extens-
ive training in the linguistic theory underlying the generator.

To be underlined in particular are the extensibility to new languages and the
extension towards the coverage of new linguistic constructions. Thus, this design
allows for quick addition of new languages to the generator. Little changes need to
be done to the grammar rules, since most of the language-dependent information
is in the dictionaries. Rules that take care of articles, auxiliaries and other lexical
markers of grammatical meanings, as well as agreement and word-order rules do
need to be modified, but they are usually very simple. Hence, the task of adding
a new language basically boils down to describing the LUs of the language in
question.

Similarly, adapting the generator to a new domain is even more simple. Many
of the existing dictionary entries can be reused, and one only needs to describe
the new lexemes found in the vocabulary of the new domain. As a matter of fact,
while the grammar described here was first used for a project in the domain of air
quality, we have successfully reused the surface modules (from SSynt⇒ DMorph)
in another project for a totally different domain (patents on optical recording tech-
nology) with very little modifications to the rules.

A benefit that is not to be underestimated for the design described here is the
ease of development that follows from it in terms of work organization. Broad cov-
erage grammars, especially in a multilingual context, suppose a more or less large
team. It is then unrealistic to hope for a homogeneously qualified team who can
work on any aspect of the problem, in particular within a lesser taught framework
such as MTT. A fine-grained modularity allows for efficient task separation. The
number of language-specific grammar rules being kept as low as possible, most of
the work for adding a new language lies in writing the dictionaries for it.

One could argue that all we have done was just to shift the workload from
the grammar to the dictionary. It is true to some extent, but the formalism used
for grammar rules is much more complex than the one used for dictionaries. We
have shown here simplified rules, but a serious grammar cannot consist only of
such simple rules. They can get rather complex, enough to scare away a potential
contributor who is not necessarily very comfortable with formal languages. Dic-
tionaries, however, are written in a very simple formalism that can be mastered
quickly. Indeed, our experience showed that it was much easier for people to learn
how to write dictionaries than how to write grammar rules. Hence, by shifting the



workload to the dictionary, we simplify the process of describing new languages as
resources become more easily maintainable and extensible. By adopting this archi-
tecture, we are able to have a (more or less) permanent core team that has enough
experience with the grammar formalism to work on the generic rules, and punctual
collaborators who can join for a specific project to develop resources for a new
language without having to learn in detail the formalism used for the codification
of grammar rules.

6 Evaluation

In accordance with the evaluation principles in software engineering, we use a
twofold evaluation procedure: what we may call micro-testing and macro-testing.

6.1 Micro-testing

Micro-testing refers to the evaluation of single rules. For each rule, a set of test
structures has been set up. These structures must be as simple as possible, in order
to avoid noise, but still designed to cover all the phenomena the rule has to be
able to cope with. In most cases, a single rule cannot be tested in isolation; its
application depends on the application of some core rules. For instance, it is not
possible to test only the construction of a given syntactic relation without also
applying the rules that create the nodes linked by the relation. Therefore, it is
necessary for evaluation to keep track of rule dependencies. Hence, not only to
each rule is associated a set of test structures, but also for each of these structures is
associated the set of rules it activates. Then, when a rule is modified, all executed
test routines that involved it are invalidated and run again.10 Micro-testing thus
verifies elementary components separately.

By the very nature of micro-testing, it is difficult to have language-independent
test structures. For example, even if one wants to test a generic DSynt ⇒ SSynt
rule, the input test structure will have to be a DSynt structure, which by definition
contains LUs of a specific language. Therefore, only the rules of the Con ⇒ Sem
module can be micro-tested with language-independent test structures (since our
conceptual structures are the same for all languages). However, it is often safe
to assume that generic rules tested in one language will work just as well in other
languages, though of course prudence must be used. Figure 3 shows a DSynt struc-
ture that we used for testing the rules that handle subject-raising verbs. Though this
structure uses information from the English dictionary, it tests rules that are gen-
eric.

Phenomena that are described by language-specific rules obviously require
language-specific structures for micro-testing. For instance, rules that handle Eng-

10Of course, this process can be automatized if we have, for all test structures, the expected result
structures (be they manually created from scratch, or result from previous test runs that have been
validated by a human).



I II
EXPECT

US INCREASE

CONCENTRATION

I

Figure 3: A sample DSynt structure for testing subject-raising

lish auxiliaries were tested with a set of nearly identical structures containing only
a verb with a subject and an object, where the sole difference was the tense and
aspectual information. One structure was created for each possible combination of
tense and aspect.

6.2 Macro-testing

Macro-testing refers to a more global evaluation procedure. Its aim is to assess
the coverage of the linguistic resources for a more or less specific purpose. The
structures used for this task are designed to cover the largest possible range of
situations the generation system must be able to handle. The goal here is not to
test specific rules, but to make sure that the system can handle the expected input
we are going to provide it with. Macro-testing is best applied after micro-testing,
as it verifies the interaction between the various components of the grammar. For
example, Figure 4 shows a structure that was used for macro-testing.11 The system
is expected to produce all expected ways to express this meaning:

Between 8 AM and 11 AM, the concentration of sulfur dioxide remained
stable at 3.
Between 8 AM and 11 AM, the sulfur dioxide concentration was stable at 3.
. . .

In addition to micro- and macro-testing, we created a tool to automatically
check the consistency and the completeness of the dictionaries. In particular, it
was necessary to make sure that all concepts that might appear in the input struc-
tures could be expressed in any language. Concepts are mapped by the conceptual
dictionaries to language-specific semantemes, which in turn are mapped to LUs.
These LUs point to prepositions in their sub-categorization patterns, and to other
LUs through lexical functions. An additional tool was created to check these links.
It is in fact a MATE grammar that takes as input a list of structures containing one
concept each (there are as many structures as we have concepts expected to appear
in the input of the system). The tool simply applies the lexicalisations found in

11We show here an English semantic structure, though the real input structure is a conceptual
structure. The corresponding conceptual structure takes too much space and would be difficult to
read, so for the sake of clarity we show only this semantic representation.



2

3

between
1

"8AM"

"11AM"

"X"

2
time

1

stable

1

Specifier

main

main

Rheme

Theme

1 2

"3"

concentration

"sulfurdioxide"

Figure 4: A sample semantic structure for macro-testing

each dictionary, and at each step makes sure that the semanteme or lexeme that
is pointed to exists in the corresponding dictionary. This tool can also check that
entries have all the necessary information (for example, that French nouns have a
gender, that every LU has a part of speech, etc.).

7 Conclusion

We propose the presentation of an efficient organization of grammatical resources
in an MTT multilingual generation system. This organization follows the prin-
ciples of sharing, modularization, and inheritance and adopts a strongly lexicalist
perspective on the grammatical resources. The implementation of resources for
six languages that belong to three different families and their practical use have
proven that these principles are valid and allow for the development of large scale
grammars.

As part of future work, we plan to extend the resources with respect to both the
coverage of linguistic constructions and further languages.

Acknowledgments

The work described in this paper has been funded by the European Commission
in the framework of the eContent Programme under the contract number EDC-
11258. We would like to thank all colleagues who have contributed to the devel-
opment of the resources presented here: Margarita Alonso Ramos, Bernd Bohnet,
Kim Gerdes, Simon Mille, Christophe Onambele Manga, Patrycja Przewoźnik,
and Vanesa Vidal. Special thanks go to Bernd Bohnet, who acted as firefighter
whenever MATE was not behaving as the grammarians expected.



References

Alshawi, H. 1992. The Core Language Engine. Cambridge, MA: The MIT Press.

Avgustinova, T. and Uszkoreit, H. 2000. An ontology of systemic relations for a
shared grammar of Slavic. In Proceedings of COLING 2000, pages 28–34.

Bateman, J., Kruijff-Korbayova, I. and G.-J-M.Kruijff. 2005. Multilingual resource
sharing across both related an unrelated languages: An implemented, open-
source framework for practical natural language generation. Journal for Re-
search on Language and Computation 3(2), 191–219.

Bohnet, B. 2006. Textgenerierung durch Transduktion linguistischer Strukturen.
Berlin: Akademische Verlagsgesellschaft, DISKI Series.

Bohnet, B., Langjahr, A. and Wanner, L. 2000. A Development Environment for
MTT-Based Sentence Generators. In Proceedings of the XVI SEPLN Confer-
ence, Vigo, Spain.

Gerdes, K. and Kahane, S. 2007. Phrasing It Differently. In L. Wanner (ed.), Selec-
ted Lexical and Grammatical Issues in the Meaning-Text Theory. In honour of
Igor Mel’čuk, pages 297–335, Amsterdam: Benjamins Academic Publishers.

Kim, R., Dalrymple, M., Kaplan, R., Holloway King, T., Masuichi, H. and
Ohkuma, T. 2003. Multilingual Grammar Development via Grammar Porting.
In ESSLLI 2003 Workshop on Ideas and Strategies for Multilingual Grammar
Development.

Mel’čuk, I.A. 1988. Dependency Syntax: Theory and Practice. Albany, NY: SUNY
Press.

Mel’čuk, I.A. 1996. Lexical Functions: A Tool for the Description of Lexical Re-
lations in a Lexicon. In L. Wanner (ed.), Lexical Functions in Lexicography
and Natural Language Processing, pages 37–102, Amsterdam: Benjamins Aca-
demic Publishers.

Santaholma, M. 2007. Grammar Sharing Techniques for Rule-Based Multilingual
NLP Systems. In Proceedings of NODALIDA 2007, pages 253–260.

Sowa, J. 2000. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Pacific Grove: Brooks Cole Publishing Company.


