
IMPLEMENTING LEXICAL FUNCTIONS IN XLE

François Lareau Mark Dras
Macquarie University Macquarie University

Benjamin Börschinger Myfany Turpin
Macquarie University University of Queensland
Universität Heidelberg

Proceedings of the LFG12 Conference

Miriam Butt and Tracy Holloway King (Editors)

2012

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

Linguistic collocations such as pay attention or heavy rain are semi-
compositional expressions that require a special treatment in symbolic gram-
mars for NLP. Within the Meaning-Text Theory framework, recurrent patterns
of collocations have been identified and described via so-called “lexical func-
tions”. Building on our previous attempt at importing such lexical functions
into LFG using glue semantics, in this paper, we show how a workable approx-
imation to this can be implemented in XLE. We explore and compare three
different approaches: using lexical functions in the f-structure, modelling
collocations in the σ-projection, and modelling them through transfer rules.

1 Introduction

Linguistic collocations such as pay attention or heavy rain are semi-compositional
expressions that require a special treatment in symbolic grammars for natural
language processing (NLP). Such expressions are very common in both oral and
written speech, yet, their treatment in NLP remains often ad hoc and superficial.
Much of the work within the Meaning-Text Theory (MTT) (Mel’čuk, 1973; Kahane,
2003) has focused on the lexicon, and the concept of collocations has been at the
heart of this theory since the mid-60s. Consequently, this framework has a well-
developed theory of the relations that exist between lexemes in the lexicon. In
particular, it provides a convenient tool for the description of collocations, called
lexical functions (LFs).

In terms of resources developed and applications within computational linguis-
tics, MTT has not been very prominent outside of natural language generation (NLG),
but LFs have proven useful especially for multilingual natural language genera-
tion (MNLG) (see, for instance, Heid and Raab, 1989; Bourbeau et al., 1990; Ior-
danskaja et al., 1992; Lareau and Wanner, 2007; Wanner et al., 2010). As it turns
out, the context of our research is an MNLG project where we aim to produce Aus-
tralian Football League game summaries in both English and Arrernte, an Australian
language of the Pama-Nyungan family. The fact that sports news is very rich in
collocations, and the bilingual nature of our system, made us look for a way to
use LFs in our LFG grammars. More generally, having LFs defined in XLE would
allow the LFG community to tap into existing lexical resources that focus on collo-
cations and are built around the concept of LFs: DEC (Mel’čuk et al., 1984–1999),
DiCo (Polguère, 2000), DicoInfo (L’Homme, 2005), and RLF (Lux-Pogodalla and
Polguère, 2011) for French, DiCE (Alonso Ramos, 2003) for Spanish, the lexical
component of ETAP-3 (Apresjan et al., 2003; Boguslavsky et al., 2004) for Russian,
English and Arabic, and the multilingual lexical database architecture ILexiCon
(LeFrançois and Gandon, 2011).

†We wish to thank Melanie Seiss for her help with transfer rules, and John Maxwell and Sina
Zarrieß for their insight on generating from s-structures. We also acknowledge the support of ARC
Discovery grant DP1095443.

Our first attempt at importing LFs into LFG (Lareau et al., 2011) was a theoretical
approach to the problem. We showed that the f-structure alone was not sufficient to
handle collocations properly, since the phenomenon pertains to the semantics-syntax
interface, and we proposed a way to encode LFs in glue semantics. However, the
current version of XLE, the platform that we use for our LFG grammar, does not
implement glue semantics, so we searched for ways to put our ideas into practice.
In this paper, we will explore and compare three different strategies: using lexical
functions in the f-structure (§5), modelling collocations in the σ-projection (§6), and
modelling them through transfer rules (§7). But before diving in, we will present
briefly what exactly we mean by collocations (§2), introduce the concept of LF (§3),
and expose our theoretical, glue-based solution (§4). We take for granted that the
reader is familiar with LFG (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple,
2001; Falk, 2001), glue semantics (Dalrymple et al., 1993; Dalrymple, 1999, 2001;
Andrews, 2010), and XLE (Maxwell and Kaplan, 1993; Crouch et al., 2011).

This paper expands on Lareau et al. (2011), and consequently there is a certain
overlap between the two. This one does not entirely subsume the previous one
however, since we have left aside all considerations linked too closely to our specific
MNLG project, to gain in generality. Hence, although we have in mind the generation
of texts rather than their interpretation, the ideas discussed here apply to both tasks
(indeed, our implementation presently works better for parsing than generation).
Also, although our examples are mostly related to football, our solution is not tied
to any particular domain.

2 Collocations

A core phenomenon in the semantics-syntax interface is the mapping between
meanings and lexemes—let us take a speech production perspective for a moment
and call this lexicalisation. The lexicalisation of one meaning is usually independent
of that of other meanings in the same sentence, but in the case of collocations, one
lexicalisation interferes with another. A collocation is a semi-idiomatic expression
where the choice of one lexeme, called the base, is free, but the choice of another
lexeme, called the collocate, is context-sensitive and is constrained by the choice
made for the base. Consider for example the phrases strong preference, intense
flavour, heavy rain and great risk. While the lexemes PREFERENCE,1 FLAVOUR,
RAIN and RISK are chosen freely, the lexemes STRONG, INTENSE, HEAVY and
GREAT are not. They carry roughly the same meaning of intensification, but their
choice is tied to the lexeme they modify.

The concept of collocation is only fully understood when it is considered in
the perspective of speech production rather than interpretation because there are
collocations that are semantically transparent, yet the lexicalisation of their collocate
is to a certain extent arbitrary. Compare for instance strong taste and intense flavour.
They have very close meaning, and the semantics of STRONG and INTENSE is

1We use italics for word forms (e.g., rain) and small capitals for lexemes (e.g., RAIN).

transparent. Yet, although strong flavour sounds correct, the expression intense taste
sounds odd. It is not really ungrammatical, nor is it semantically ill-formed, but
it does not sound idiomatic; it is just not how English speakers would say it. The
meaning of intensification is not lexicalised freely when it is used in the context
of the lexeme TASTE: it must be lexicalised as STRONG. As further evidence that
the relation between TASTE and STRONG is arbitrary, consider mild taste, which
sounds idiomatic, as opposed to weak taste, which sounds odd, although WEAK is
the antonym of STRONG. This is because there is a special relation in the lexicon of
English between TASTE and STRONG or MILD that does not exist between TASTE
and INTENSE or WEAK. It is these lexical relations that we aim to model; the
question is how to describe these relations between lexemes in an LFG dictionary?

There are several types of collocations. We have mentioned examples where the
collocate is a modifier of the base and expresses intensification or its opposite. There
are adjunctive collocates that express a range of meanings: black coffee ‘coffee
without anything added to it’, green energy ‘energy that does not pollute’, decent
meal ‘meal with enough food to satisfy’, wrong decision ‘bad decision’, etc.

Another common type of collocation is where the collocate is a verb that
takes the base as one of its arguments. These are usually referred to as light verbs
(Jespersen, 1946). Now, before we go any further, let us get terminological confusion
out of the way. The LFG-aware reader may be familiar with the work on light verbs
by Kim (1991, 1993), Matsumoto (1996), Butt (2003, 2010), Yokota (2005), Ivana
and Sakai (2007) or Seiss (2009). These authors did not confine themselves to
collocations, while we are not concerned with light verbs that combine freely,
such as MAKE in Mary made him read the book. Here, there is no special lexical
relation between MAKE and READ; this causative combines with any verb that is
semantically compatible. This is different from collocations, where the choice of the
causative depends on the choice of the lexeme it combines with, e.g., GIVE in Mary
gave him the flu. That being said, there is an overlap with the mentioned works,
and although LFs are intended to describe collocations, they could also describe
non-idiomatic light verbs; see the paper by Dras et al. in this volume.

To illustrate what we have said, much of our discussion will be based on the
example below:

(1) Mark kicked a beautiful goal.

The lexemes KICK and BEAUTIFUL, in this context, are both collocates of GOAL.
Beautiful goal is typical of the “colourful” style that characterises sports news, and
does not mean much more than a mere positive appreciation of the goal from the
author. It could be replaced with, say, spectacular goal or brilliant goal, without
significantly changing the meaning. BEAUTIFUL, BRILLIANT and SPECTACULAR
are all instances of the same collocation pattern (and as we will see in the follow-
ing section, LFs are all about identifying such patterns). The semantics of these
collocations is (λx.good(x))(λy.goal(y)), where λx.good(x) gets lexicalised as
BEAUTIFUL, BRILLIANT or SPECTACULAR when it is a modifier of GOAL.

Kick a goal may seem more compositional. Indeed, the player does have to
kick the ball, but since it is the only way to score a goal in Australian football,
the semantic contribution of KICK is marginal. This becomes more apparent when
we consider the translation of this phrase into other languages, where the idea of
kicking totally disappears: in Spanish, hacer un gol, lit. ‘do a goal’, in Arrernte,
goal arrerneme, lit. ‘put a goal’, etc. In English, the phrase score a goal means
essentially the same as kick a goal. Finally, the meaning conveyed by sentence (1)
can also be expressed as a noun phrase, as in (2):

(2) a beautiful goal to/by Mark

All these facts suggest that KICK, in this context, is a collocational light verb and that
its semantic contribution is weak enough to be considered null. So, the semantics
of kick a goal in (1) should be the same as that of goal in (2), i.e., λx.goal(x).
Note that we are only concerned with lexical situational meaning, leaving aside
grammatical meaning and phenomena pertaining to the information structure, such
as the difference between (1) and (2). Both expressions denote the same situation,
but differ in their communicative perspective—a difference that we want to capture
in a different structure.

Now, let us present the concept of LF.

3 Lexical functions

LFs were proposed by Žolkovskij and Mel’čuk (1967) as a way to describe colloca-
tions in the context of machine translation. The concept is based on the observation
that collocations tend to be instances of a number of recurrent patterns that occur
across languages. For example, the expressions strong preference, gravely ill, in-
tense flavour and win hands down are all instances of a pattern of semantics-syntax
mapping where the meaning of the base is intensified and, syntactically, the col-
locate is a modifier of the base. Žolkovskij and Mel’čuk’s idea, then, was to give
names to such patterns. This one was given the name Magn (from Latin MAGNUS
‘big’). Then, the pattern is modeled as a relation2 between the base and the collocate.
Hence, Magn(PREFERENCE)=STRONG, Magn(FLAVOUR)=INTENSE, etc. Over the
years, more than fifty basic recurrent patterns of this type, and a few hundreds of
complex ones, have been identified across languages and given names. Detailed
descriptions of LFs can be found elsewhere (Mel’čuk, 1995, 1996, 1998; Wanner,
1996b; Apresjan, 2000; Kahane and Polguère, 2001; Apresjan et al., 2002). We will
see other patterns of collocations in the coming sections.

In §2, we identified in sentence (1) two collocations: beautiful goal and kick a
goal. The first one is an instance of a pattern where the semantics of the collocate is
λx.good(x), and where the collocate is realised as a syntactic modifier of the base.
The LF for this pattern is called Bon, and we would like to have in our dictionary the

2In a sense, the term lexical function is unfortunate since in fact these are not true mathematical
functions because there can be several values for the same relation applied to a given base.

ATTENTION [of X to Y]

Magn close/whole/complete/undivided ∼
Func2 X’s ∼ is on Y
nonFunc0 X’s ∼ wanders
Oper12 X gives his/pays ∼ to Y
Oper2 Y attracts/receives/enjoys X’s ∼
Oper2+Magnquant-X Y is the center of ∼ (of many Xs)
IncepOper12 X turns his ∼ to Y
IncepOper2 Y gets X’s ∼
ContOper2 Y holds/keeps X’s ∼
CausFunc2 Z draws/calls/brings X’s ∼ to Y
LiquFunc2 Z diverts/distracts/draws X’s ∼ from Y

Figure 1: Collocations controlled by ATTENTION described via LFs.

instruction Bon(GOAL)=BEAUTIFUL/BRILLIANT/SPECTACULAR. The second one
is an instance of another pattern where the collocate has no meaning but serves only
as a support verb to turn a noun into a verbal expression. Syntactically, the collocate
takes as its object the base of the collocation, and as its subject the first semantic
argument of the base. This pattern corresponds to the LF Oper1. We would then
like to have in our dictionary the instruction Oper1(GOAL)=KICK/SCORE/BOOT.

In short, the whole idea is to seek patterns in collocations. There will always
be subtle nuances between two synonymous collocations because collocates are
never entirely stripped of their literal meaning in usage, so in order to recognise
patterns we have to somehow reduce the meaning of collocations to rid them of
such nuances. For practical purposes however, it is safe to do so, and the benefits
we get in terms of grammar engineering and resource maintainability are greater
than the loss in granularity (especially given the current state of computational
semantics—we are not exactly at the stage of subtle nuances yet). Armed with
such LFs, the lexicographer can quickly and conveniently describe collocations in a
dictionary. For example, the entry for ATTENTION could look like the one in Fig. 1.
We will not discuss each of these LFs here; the point is to illustrate the wide range
of collocations that can be captured efficiently with LFs.

The patterns corresponding to each LF must be defined in the grammar. We
discuss in the following sections how this can be conceptualised in LFG and imple-
mented in XLE. Once this is done, the patterns can be reused across languages and
domains with little or no modifications.

4 Collocations in glue semantics

In the context of LFG, there have been several approaches to developing a com-
positional notion of semantics derived from the f-structure; we have chosen to
base our work on Dalrymple et al. (1999) and Dalrymple (2001)’s view of glue

semantics, which we will assume the reader is familiar with. It should be noted
that the exact form of the semantic representations does not have to be as in this
paper; our analysis is not bound to it. Instead of the simple expressions we show
here, one could use event semantics or frames, for instance. What does not vary is
the linear logic expressions that control semantic composition. Linear logic differs
from classical logic in that premises are treated as resources that are consumed
in the process of the proof. This resource-sensitivity is appropriate when dealing
with the linguistic expression of semantic content: the contribution of each lexeme
and phrase to the meaning of a sentence is usually unique, and there should be
no missing or redundant lexemes in terms of the meaning to be expressed. In the
expressions that we are concerned with, however, the principle of compositionality
is violated, and the mapping between meanings and lexemes can be rather complex.

Let us get back to our example (1). For a literal reading of this sentence, the
lexical entries for goal, kicked and beautiful would be as follows:

goal N (↑PRED)=‘goal’
goal : ↑σ

kicked V (↑PRED)=‘kick�(↑SUBJ),(↑OBJ)�’
(↑TENSE)=past
λx.λy.kick(x, y) : (↑SUBJ)σ � [(↑OBJ)σ � ↑σ]

beautiful A (↑PRED)=‘beautiful’
λx.beautiful(x) : (ADJ ∈ ↑)σ � (ADJ ∈ ↑)σ

This would yield the meaning ‘kick(Mark, beautiful(goal))’ (or, if you prefer,
‘kick(e1,m, g) ∧ Mark(m) ∧ goal(g) ∧ beautiful(e2, g)’, but we will stick to the
former, simple notation). What we would like instead is ‘good(goal(Mark))’. For
this, we need to change the lexical entries for these three word forms.

First, as we said in §2 and §3, beautiful, in (1), denotes a vague meaning of
positive appreciation, which we could represent as ‘λx.good(x)’. This is only true
when beautiful modifies the noun GOAL (and perhaps other nouns with which it
forms a collocation), so there must be a constraint in the entry that checks the
context in which this modifier is used; this is what the second line does:

beautiful A (↑PRED)=‘beautiful’
((ADJ ∈ ↑) PRED)=c‘goal’
‘λx.good(x)’ : (ADJ ∈ ↑)σ � (ADJ ∈ ↑)σ

Second, kicked a goal does not mean more than ‘λx.goal(x)’, i.e., the verb
KICK simply recopies its object’s meaning, with the constraint that its object is the
lexeme GOAL:

kicked V (↑PRED)=‘kick�(↑SUBJ),(↑OBJ)�’
(↑TENSE)=past
(↑OBJ PRED)=c‘goal’
‘λx.x’ : (↑OBJ)σ � ↑σ

Finally, the meaning of goal should be a unary predicate: ‘λx.goal(x)’, i.e.,
‘x goals’, so to speak. In the construction under consideration here, its semantic
predicativity is not echoed in syntax, but this should not affect the representation of
its meaning. In fact, this is precisely why a support verb is needed in the first place:
KICK ties the noun GOAL to its semantic argument MARK and turns the noun into
a verbal expression. This is rendered with a meaning constructor that checks that
there is a meaning available for the subject of the verb of which GOAL is the object.
This entry is only correct when used in the context of a support verb of which it is
the object, so we also need a constraining equation here. This is inelegant, but we
will see in §6 how we can get rid of it in the implementation.

goal N (↑PRED)=‘goal’
((OBJ↑) PRED)=c‘kick’
‘λx.goal(x)’ : ((OBJ↑) SUBJ)σ � ↑σ

As we have said above, kick a goal could be paraphrased as score/boot a goal,
and beautiful goal could be replaced with brilliant/spectacular goal. The entries for
the alternative collocates would be nearly identical to the ones we have just shown.
There are generalisations to be made here, and we can capture them with lexical
rules that we would use in the entries. And this is exactly where LFs come into play.
The idea is to define lexical rules for Oper1 and Bon, and then use them as follows:

kick V { @(Oper1 goal) | . . . }
boot V { @(Oper1 goal) | . . . }
score V { @(Oper1 goal) | . . . }
beautiful A { @(Bon goal) | . . . }
brilliant A { @(Bon goal) | . . . }
spectacular A { @(Bon goal) | . . . }

In the following sections we will explore three different ways or defining such
lexical rules via templates in XLE.

5 An f-structure-based implementation

The simplest way to deal with collocations in XLE is to flatten their semantics by
representing it in the f-structure. We achieve this by replacing collocates with the
names of LFs in the PRED attribute, thus using in our representations “generalised
lexemes”, in the sense of Wanner (1996a), in a way similar to MTT’s deep-syntactic
representations, where LFs appear as nodes like other lexemes (Mel’čuk, 1988).
For example, for the sentence (1), we would have in the f-structure Oper1 and
Bon instead of KICK and BEAUTIFUL, as in Fig. 2. By using LFs instead of lexical
items, we abstract away from the collocates used in the sentence, which yields an
f-structure that represents a range of paraphrases that have the same syntax and
(roughly) the same meaning, but differ in the lexical choice of collocates. In this

example, we have two types of collocations: a modifier (Bon) and a support verb
(Oper1). These correspond to two types of lexical templates in XLE. Let us first
look at some modifiers."Mark kicked a beautiful goal"

'Oper1<[1:Mark], [12:goal]>'PRED
'Mark'PRED1SUBJ

'goal'PRED

'Bon'PRED14ADJUNCT

-DEF12

OBJ

PASTTENSE6

Figure 2: An f-structure for (1) with LF names in it.

Below are the templates for three different patterns of collocations where the
base is modified by an adjectival or adverbial collocate. The difference between
them is semantic, which is captured by the names of the LFs in the PRED attribute:
Bon for modifiers that denote a positive appreciation from the speaker (beautiful
goal, superior quality); Epit for pleonastic modifiers that contribute little or
nothing to the meaning of the phrase, merely repeating something that is included
in the meaning of the base (happy victory, safe haven); and Magn for modifiers that
denote intensification in a broad sense (considerable amount, intense flavour). This
is what the first instruction of these patterns encodes. It also gives the syntactic
valence of the lexeme, which is trivial in the case of modifiers like here (they do not
have syntactic arguments). The second instruction ensures that we are really dealing
with a collocation, and not a normal modifier. It checks that the adjective/adverb is
an adjunct of a specific lexeme, the base of the collocation, passed as an argument
to the template. This effectively models restricted lexical co-occurrence.

Bon(Base) =

(ˆPRED)=’Bon’

((ADJUNCT ˆ) PRED FN) =c Base.

Magn(Base) =

(ˆPRED)=’Magn’

((ADJUNCT ˆ) PRED FN) =c Base.

Epit(Base) =

(ˆPRED)=’Epit’

((ADJUNCT ˆ) PRED FN) =c Base.

Now, describing common adjunct-type collocations in the dictionary is a matter
of calling such templates. Adjectives and adverbs have their normal description,
corresponding to their literal readings (given below by the trivial templates @ADJ
and @ADV—their exact definition is irrelevant to us), to which are added a number of
LF templates for collocations they are involved in. Both the literal and the idiomatic
readings are thus available; we leave it to an external process to choose the right
interpretation.

beautiful A { @ADJ | @(Bon goal) }.

brilliant A { @ADJ | @(Bon goal) }.

happy A { @ADJ | @(Epit victory) }.

spectacular A { @ADJ | @(Bon goal) }.

easily Adv { @ADV | @(Magn win) }.

hands_down Adv @(Magn win).

This is equivalent to saying that Bon(GOAL)=BEAUTIFUL/BRILLIANT/SPEC-
TACULAR, Epit(VICTORY)=HAPPY, and Magn(WIN)=EASILY/_HANDS DOWN^.
Note that _HANDS DOWN^ has no literal interpretation; it can only be used as an
intensifier of WIN (and perhaps a few other lexemes that we have ignored here).

Below are the templates for three different patterns of support verbs: Func0
(the wind blows, the rain pours) and Oper1 (perform an operation, take a nap),
which are semantically empty verbs, and LiquFunc0 (snap a streak, eradicate
a disease), which means ‘to cause the end of’. The templates for support verbs
are similar to the ones above, but their PRED must encode their syntactic valence,
since such collocates always have at least one syntactic argument; this is what the
first line of these templates is for. The second line gives the position of the base
in relation to the support verb; unlike the templates above, where the base of the
collocation was always the lexeme being modified by the collocate, the base of a
support verb can be any of its syntactic arguments. Hence, the difference between
a Func0 and an Oper1 is purely syntactic: the former is an intransitive verb that
takes the base as its subject, whereas the latter is a transitive verb that takes the
base as its object. The difference between an Oper1 and a LiquFunc0, on the
other hand, is semantic, and it is captured by the PRED attribute. This is not very
transparent however, because patterns that have the same semantics (such as Func0
and Oper1, both semantically empty) also have a different PRED functor.

Func0(Base) =

(ˆPRED)=’Func0<(ˆSUBJ)>’

(ˆSUBJ PRED FN) =c Base.

Oper1(Base) =

(ˆPRED)=’Oper1<(ˆSUBJ)(ˆOBJ)>’

(ˆOBJ PRED FN) =c Base.

LiquFunc0(Base) =

(ˆPRED)=’LiquFunc0<(ˆSUBJ)(ˆOBJ)>’

(ˆOBJ PRED FN) =c Base.

Then, the collocations boot/kick/score a goal, get a mark, get the victory and
snap a streak are described in the dictionary as below (@TRANS is the usual template
for transitive verbs with a literal reading):

boot V { @TRANS | @(Oper1 goal) }.

get V { @TRANS | @(Oper1 mark) | @(Oper1 victory) }.

kick V { @TRANS | @(Oper1 goal) }.

score V { @TRANS | @(Oper1 goal) }.

snap V { @TRANS | @(LiquFunc0 streak) }.

With the lexical entries discussed above, and a few trivial ones not shown here,
we can parse (1) to obtain the f-structure in Fig. 2. Because Oper1 and Bon are
abstractions on the lexemes KICK and BEAUTIFUL that appeared in the parsed
sentence, we can regenerate all paraphrases that only differ in the lexical choice for
these collocates:

(3) Mark booted/kicked/scored a beautiful/brilliant/spectacular goal.

This is useful for shallow paraphrasing where lexical items are changed. However,
it is not possible to produce paraphrases that differ in their syntactic structure. For
this, we need to have a proper semantic structure. The obvious way to get one in
XLE is to use the σ-projection mechanism; let us now discuss this approach.

6 An s-structure-based implementation

XLE allows us to define new projections in addition to the built-in φ-projection.
We use this mechanism to derive from the f-structure an s-structure where we
encode the semantics of expressions. Since we now have a separate structure for
meaning, the attribute PRED does not have to capture semantic information anymore.
It is not obsolete however; it stores lexico-syntactic information about lexemes,
that is, the name of the lexeme and its syntactic valence in the expression under
consideration. Our f-structure now looks like the usual ones, sticking to a more
superficial description of the actual words used in the sentence, regardless of whether
they have an idiomatic or a literal reading. Thus, the f-structure for sentence (1) is
the one in Fig. 3."Mark kicked a beautiful goal"

'kick<[1:Mark], [12:goal]>'PRED
'Mark'PRED1SUBJ

'goal'PRED

'beautiful'PRED14ADJUNCT

-DEF12

OBJ

PASTTENSE6

Figure 3: A normal f-structure for (1).

Our s-structure is a connected direct acyclic graph that encodes predicate-
argument relations only. We do not use semantic roles; we only encode the salience
of a predicate’s arguments by numbering them from 1 up in decreasing order of
salience, as is done in MTT’s semantic representations (Mel’čuk, 2004). This has
the advantage of having more generic relations between meanings, which makes it
easier to find recurrent patterns. The graph is encoded in XLE as an attribute-value
matrix (AVM) where nodes are rendered as structures, and the relations between the
nodes as attributes ARG1, ARG2, etc., that have as their value an embedded structure.
The labels of the nodes, given by the attributes SEM in the AVMs, are either the name
of a lexeme when it has a literal reading, or the name of a LF when it is a meaningful

collocate (e.g., ‘Bon’ instead of ‘good’, ‘Magn’ instead of ‘big’ or ‘intense’). We
use LF names here because we want to underline the fact that we are pointing to
an idealised meaning, stripped of the nuances that may exist between instances of
a collocation pattern. Hence, for sentence (1), we want to have the s-structure in
Fig. 4, equivalent to the expression (λx.Bon(x))((λy.goal(y))(Mark)). To the left
is a graphical representation of the meaning of (1); to the right is its encoding as an
AVM in XLE (note that structure 2 is actually embedded in structure 4 even if it does
not appear so visually—this is how XLE displays the result for technical reasons
that are irrelevant here). We leave aside grammatical meanings.

≡

MarkSEM8ARG1
goalSEM2

[2]ARG1
BonSEM4

Figure 4: An s-structure for (1).

It is in the projection between f-structure and s-structure that the complex
mapping between collocations and their semantics takes place. Again, we use
templates to define LFs; we will look below at the templates for Bon, Epit and
Oper1. As in §5 above, modifier-type templates such as Bon or Epit have a trivial
PRED and these collocates are always adjuncts of their base, while support verbs
like Oper1 have a PRED that reflects their syntactic sub-categorisation, and their
base may be any of their syntactic arguments. This time however, the PRED functor
is the lexical stem, since we do not need to represent the semantics of collocates in
the f-structure anymore. This is ensured by the s:: instructions, which construct the
σ-projection. In the Bon pattern, the first semantic instruction projects the idealised
meaning ‘Bon’ as the SEM attribute in the s-structure. The second instruction gives
the mapping between the semantic and syntactic relations: the meaning ‘Bon’ is
a semantic predicate that becomes in f-structure an adjunct of its first semantic
argument—i.e., the σ-projection of the collocate has a first semantic argument in
s-structure which is the σ-projection of the lexeme it is an adjunct of in f-structure.
In the case of Epit, because it is a pleonastic adjunct that does not contribute
significant meaning to the phrase, there is simply no semantic information. This is
not possible for support verbs like Oper1, although they are also semantically empty,
because they stand at the root of the clause, so they must provide a σ-projection
for the outermost f-structure. Also, even if they do not contribute meaning, they do
perform a rather complex remapping of semantic/syntactic arguments. The meaning
of an Oper1 is that of its base, which is always its direct object (cf. the second
line of the Oper1 template); this is what the first semantic instruction models. The
last instruction handles the remapping of arguments: the first semantic argument in
s-structure becomes the subject of the support verb in f-structure.

Bon(Base) =

(ˆPRED) = ’%stem’

((ADJUNCT ˆ) PRED FN) =c Base

(s::ˆ SEM) = Bon

(s::ˆ ARG1) = s::(ADJUNCTˆ).

Epit(Base) =

(ˆPRED) = ’%stem’

((ADJUNCT ˆ) PRED FN) =c Base.

Oper1(Base) =

(ˆPRED)=’%stem<(ˆSUBJ)(ˆOBJ)>’

(ˆOBJ PRED FN) =c Base

s::ˆ = s::(ˆOBJ)

(s::ˆ ARG1) = s::(ˆSUBJ).

These templates are used in the same way as in §5 above. Fig. 5 illustrates
graphically what is happening in the semantics-syntax interface for the Oper1 and
Bon patterns. The elements in bold are the ones actively built by the rules above.
Note how the Oper1 does not really realise any meaning from the s-structure, but
merely links syntactically a predicate to its first semantic argument. These graphs
bear a striking resemblance to Polarized Unification Grammars (PUGs) (Kahane and
Lareau, 2005; Lareau, 2008).

s-structure f-structure

goal

Mark

arg1

goal

s

kick
s

Mark

s obj subj

s-structure f-structure

goal

goal

s

Bon

arg1

beautiful

s adjunct

Figure 5: σ-projection and argument mapping for Oper1 and Bon.

Let us look at a more complex example involving an idiomatic causative verb:

(4) A beautiful goal to Mark gave the victory to Sydney.

Its f-structure, in Fig. 6, has nothing particularly interesting. Its semantics, however,
is not completely compositional. Here, gave means roughly ‘cause’, and beautiful
expresses positive appreciation by the speaker. As we did for the previous example,
we replace the collocational meanings by the names of the LFs that correspond to
them, to highlight the fact that we are dealing with idealised meanings. Then, the
s-structure for (4) should be something like in Fig. 7.

The light verb GIVE, besides having a non-literal meaning in this context, “steals”
the first semantic argument of ‘victory’, which becomes its oblique object (the choice
of this syntactic function is flexible). This corresponds to Mel’čuk’s CausFunc1,
which we define below. The first line gives its syntactic sub-categorisation and the

"a beautiful goal to Mark gave the victory to Sydney"

'give<[2:goal], [17:victory], [21:Sydney]>'PRED
'goal<[8:Mark]>'PRED

'Mark'PRED
toPFORM8

OBL

'beautiful'PRED4ADJUNCT

-DEF2

SUBJ

'victory'PRED
+DEF17

OBJ

'Sydney'PRED
toPFORM21

OBL

PASTTENSE12

Figure 6: An f-structure for (4).

≡

MarkSEM8ARG1
goalSEM2

ARG1

SydneySEM21ARG1
victorySEM17

ARG2

CausSEM12

[2]ARG1
BonSEM4

Figure 7: An s-structure for (4).

second gives the position of the base that controls this collocation. The last four
lines model the tricky semantics of this light verb. First, it projects its meaning,
the idealised meaning ‘Caus’. Then, it gives the mapping of the first and second
semantic arguments of ‘Caus’, which become respectively the subject and object
of GIVE. Finally, it maps the first semantic argument of the σ-projection of its
object to its oblique (that is, it “steals” an actant from ‘victory’). This template is
then used in the entry for GIVE as below. Fig. 8 gives a visual representation of
the complex mapping between semantic and syntactic elements performed by this
template, where the bold elements are the ones actively involved in the rule.

CausFunc1(Base) =

(ˆPRED)=’%stem<(ˆSUBJ)(ˆOBJ)(ˆOBL)>’

(ˆOBJ PRED FN) =c Base

(s::ˆ SEM)=Caus

(s::ˆ ARG1)=s::(ˆSUBJ)

(s::ˆ ARG2)=s::(ˆOBJ)

(s::(ˆOBJ) ARG1)=s::(ˆOBL).

give V { @DITRANS | @(CausFunc1 victory) }.

The s-structure solution yields a higher level of abstraction than the previous
one, so that even expressions with a completely different syntactic structure get the

s-structure f-structure

goal goal

s

Caus

arg1

victory

arg2

give
s

Sydney

arg1

victory

s

Sydney

s

subj obj obl

Figure 8: σ-projection and argument mapping for CausFunc1.

same analysis. Consider for example sentence (1) and the noun phrase (2). When
we parse them, we get different f-structures, but the same s-structure, as in Fig. 9.
However, it is not possible to (re)generate from this s-structure, because additional
projections in XLE do not have their own structure but are instead encoded as special
attributes in the f-structure. This means that generating from an s-structure amounts
to generating from an underspecified f-structure where all the attributes except
the S:: ones are missing. XLE can accept underspecified f-structures as input for
generation, but there must be a PRED attribute in each structure, because of choices
made during the implementation of the platform. So this approach works for parsing,
but will not work for generation or paraphrasing in the current implementation of
XLE. In order to generate from s-structures like the ones we have just looked at, we
have tried a different approach, using transfer rules."Mark kicked a beautiful goal"

'kick<[1:Mark], [12:goal]>'PRED
'Mark'PRED1SUBJ

'goal'PRED

'beautiful'PRED14ADJUNCT

-DEF12

OBJ

PASTTENSE6

"a beautiful goal to Mark"

'goal<[8:Mark]>'PRED
'Mark'PRED
toPFORM8

OBL

'beautiful'PRED4ADJUNCT

-DEF2

� �
MarkSEM8ARG1

goalSEM2

[2]ARG1
BonSEM4

Figure 9: Two synonymous expressions yielding the same s-structure.

7 A transfer-based implementation

The Packed Rewriting System (PRS) was first intended as the transfer module of an
XLE-based machine translation system. It applies rewrite rules that produce new
f-structures from existing ones. Since s-structures are in fact encoded as f-structures,
it is possible to hijack this mechanism to model the semantics-syntax interface.
Indeed, Crouch and King (2006) and Zarrieß and Kuhn (2010) have done it for,
respectively, parsing and generation. We have tried to use it in a similar way to
generate collocations, with mixed results.

Transfer rules rewrite attributes of an f-structure. Rules can be optional, which
allows for backtracking and provides a set of output f-structures. Our input is an
s-structure like the one in Fig. 4, where the only attributes are SEM and ARG1,
ARG2, etc. These will be the elements on the left-hand side of the transfer rules. On
the right-hand side, we have attributes of a normal f-structure: PRED, SUBJ, OBJ and
ADJUNCT. There is also a predicate ARG that encodes the position of the syntactic
arguments in PRED’s value, as well as IN SET, which builds sets of adjuncts.

Below are the transfer-based templates for Bon and Oper1. Whereas in the
s-structure approach we looked for the base of the collocation in the f-structure with
the instruction ((ADJUNCT ˆ) PRED FN) =c Base, in the transfer-based approach
we must encode lexical restrictions in semantics. Indeed, the left-hand side of a
rule can have contextual elements, denoted by the + symbol; these elements are
not consumed by the rule. There is no way to specify such contextual elements on
the right-hand side of the rules to avoid building new items in the f-structure. This
means that in this version of our grammar, collocations are controlled by meanings
rather than lexemes, which is a dangerous setting since most of the lexical relations
that we are trying to describe actually exist between lexemes, not meanings. For the
rest, these templates do essentially the same things as the ones we have discussed
in §6 (cf. Fig. 5). In the case of Bon, the meaning ‘Bon’ and its first semantic
argument are consumed by the rule to produce an adjunct in f-structure. For Oper1,
only the relation ARG1 is consumed, and it is realised in syntax by the support verb
and its subject and object.

bon(%Base, %Collocate) ::

SEM(%X, Bon),

ARG1(%X, %Y),

+SEM(%Y, %Base)

?=>

PRED(%X, %Collocate),

ADJUNCT(%Y, %Adjs), in_set(%X, %Adjs).

oper1(%Base, %Collocate) ::

+SEM(%X, %Base),

ARG1(%X, %Y)

?=>

PRED(%Z, %Collocate),

arg(%Z, 1, %Y), SUBJ(%Z, %Y),

arg(%Z, 2, %X), OBJ(%Z, %X).

The lexical items in this kind of grammar contain only the information necessary
for the semantics-syntax interface. Below are some of the entries relevant for the
meaning ‘goal’ (@n and @n_obl are trivial templates that simply realise a meaning
as a noun or a noun with an oblique complement).

@bon(goal, beautiful).

@bon(goal, brilliant).

@bon(goal, spectacular).

@oper1(goal, boot).

@oper1(goal, kick).

@oper1(goal, score).

@n_obl(goal).

@n(goal).

The most interesting characteristic of this approach is that it allows us to group
the collocations by their base instead of having them described in the lexical entries
for the collocates as in §5 and §6. This is a lot more convenient for the lexicographer.
There are three main drawbacks, however. First, as we have mentioned above, the
collocations in this grammar have to be controlled by meanings instead of lexemes.
Second, we have to set all our rules as optional. When there is no obligatory rule, it
is always a valid solution to leave some or all of the elements of the input structure
untouched in the output. We end up with chimeras that contain stock from the
semantic and functional levels of representation, and we cannot do anything with
these. While it would be possible to filter out the invalid output structures, this
is obviously not an elegant solution. Finally, the transfer rules are applied in the
order in which they appear in the file. This is unfortunately incompatible with
what we are trying to do. So we have not yet overcome the limitations of the
current implementation of XLE so as to allow for a direct application of the analysis
presented here to NLG. We are currently exploring other strategies to solve this
problem by means of external processing that are of no particular interest from a
linguistic perspective.

8 Conclusion

MTT’s lexical functions offer an elegant and convenient solution to the treatment
of collocations in NLP. We showed that this device could be used also in the LFG
framework, both from a conceptual and implementational point of view. Glue
semantics offers the kind of expressive power we need to handle the complex map-
pings between meanings and lexemes, as well as their arguments, in semi-idiomatic
expressions. However, our glue-based solution involves adding information in the
lexical entry of the base of collocations in a way that is not entirely satisfactory,
since it spreads out the information across several entries. In XLE, we tried and
compared three different strategies for the implementation of LFs.

The f-structure based implementation lacks the depth needed to fully model
a phenomenon that indeed belongs to the semantics-syntax interface. By using

abstract LF names instead of actual lexemes in the f-structure, we managed to
represent the functional structure of a range of paraphrases that differ in the choice
of the collocates. Despite its inherent limitations, this implementation works for
both parsing and generation, and allows shallow paraphrasing.

The s-structure based implementation is the one that most closely matches the
power of glue semantics. It is the most elegant of our three solutions to the problem
of describing collocations, as it allows us to parse synonymous expressions with
radically different lexico-syntactic structures and get the semantic representation
that we expect. However, because of how XLE is implemented, we cannot generate
from s-structures using this approach.

As a complementary strategy for generation, we have used transfer rules to
handle the semantics-syntax interface. This strategy is different from the other two
in that it isolates the semantics-syntax interface from the rest of the model. It is
the most compelling solution for lexicographers because it allows them to group
collocations by their base, rather than forcing them to describe the collocations in
the entries of the collocates. However, technical considerations force us to seek
other strategies to handle generation from s-structures. One strategy that we plan to
explore is to use Bohnet et al. (2000)’s generic graph-transducer, MATE, to handle
the mapping between s-structure and f-structure. This approach could be combined
with our f-structure implementation.

We view this work as developing a set of tools for the LFG community, rather
than an actual grammar. For the f-structure and s-structure strategies, we have
defined 222 templates corresponding to a range of LFs (modifiers, dummy support
verbs, causative light verbs, inchoative light verbs, etc.), which we will make
available at http://web.science.mq.edu.au/˜ayeye.

For future work, we plan to extend the coverage of our patterns to include
more LFs. We also want to explore how we can make these patterns even more
generic, and we hope to make them compatible with Butt et al. (2002)’s ParGram
architecture.

References

Alonso Ramos, Margarita. 2003. Hacia un diccionario de colocaciones del español
y su codificación. In M.A. Martı́ (ed.), Lexicografı́a computacional y semántica,
pages 11–34, Barcelona: Edicions de l’Universitat de Barcelona.

Andrews, Avery. 2010. Propositional glue and the correspondence architecture of
LFG. Linguistics and Philosophy 33, 141–170.

Apresjan, Juri. 2000. Systematic lexicography. Oxford: Oxford University Press.
Apresjan, Jury, Boguslavsky, Igor, Iomdin, Leonid, Lazursky, Alexander, Sannikov,

Vladimir, Sizov, Victor and Tsinman, Leonid. 2003. ETAP-3 linguistic processor:
a full-fledged NLP implementation of the Meaning-Text Theory. In Proceedings
of MTT 2003, pages 279–288, Paris.

Apresjan, Jury, Boguslavsky, Igor, Iomdin, Leonid and Tsinman, Leonid. 2002.

Lexical functions in actual NLP applications. In Computational linguistics for the
new millennium: divergence or synergy?, pages 55–72, Frankfurt: Peter Lang.

Boguslavsky, Igor, Iomdin, Leonid and Sizov, Victor. 2004. Multilinguality in ETAP-
3: reuse of lexical resources. In Proceedings of the Workshop on Multilingual
Linguistic Ressources (MLT’04), pages 7–14, Stroudsburg, PA.

Bohnet, Bernd, Langjahr, Andreas and Wanner, Leo. 2000. A development en-
vironment for an MTT-based sentence generator. In Proceedings of the first
international conference on Natural Language Generation, volume 14, pages
260–263, Mitzpe Ramon.

Bourbeau, Laurent, Carcagno, Denis, Goldberg, Eli, Kittredge, Richard and
Polguère, Alain. 1990. Bilingual generation of weather forecasts in an oper-
ations environment. In Proceedings of the 13th International Conference on
Computational Linguistics (COLING’90), pages 90–92.

Bresnan, Joan. 2001. Lexical-functional syntax. Oxford, UK: Blackwell.
Butt, Miriam. 2003. The light verb jungle. In G. Aygen, C. Bowern and C. Quinn

(eds.), Harvard Working Papers in Linguistics. Papers from the GSAS/Dudley
House Workshop on Light Verbs, pages 1–49.

Butt, Miriam. 2010. The light verb jungle: still hacking away. In M. Amberber,
B. Baker and M. Harvey (eds.), Complex predicates: cross-linguistic perspectives
on event structure, pages 48–78, Cambridge: Cambridge University Press.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The parallel grammar project. In Proceedings of COLING-2002
Workshop on Grammar Engineering and Evaluation, pages 1–7.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy, Maxwell, John and
Newman, Paula. 2011. XLE documentation. Palo Alto Research Center, Palo
Alto.

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via f-structure rewriting.
In Proceedings of the LFG06 Conference, Konstanz.

Dalrymple, Mary (ed.). 1999. Semantics and syntax in lexical functional grammar:
the resource logic approach. Cambridge, MA: The MIT Press.

Dalrymple, Mary. 2001. Lexical functional grammar, volume 42 of Syntax and
Semantics Series. New York: Academic Press.

Dalrymple, Mary, Gupta, Vineet, Lamping, John and Saraswat, Vijay. 1999. Relating
resource-based semantics to categorial semantics. In Dalrymple (1999).

Dalrymple, Mary, Lamping, John and Saraswat, Vijay. 1993. LFG semantics via
constraints. In Proceedings of the 6th Meeting of the European Association for
Computational Linguistics, Utrecht.

Dras, Mark, Lareau, François, Börschinger, Benjamin, Dale, Robert, Motazedi,
Yasaman, Rambow, Owen, Turpin, Myfany and Ulinski, Morgan. 2012. Complex
predicates in Arrernte. In M. Butt and T. H. King (eds.), Proceedings of the
LFG12 Conference, Stanford: CSLI Publications.

Falk, Yehuda. 2001. Lexical-functional grammars. Stanford: CSLI Publications.
Heid, Ulrich and Raab, Sybille. 1989. Collocations in multilingual generation. In

Proceedings of the fourth conference of the European chapter of the Association

for Computational Linguistics (EACL’89), pages 130–136.
Iordanskaja, Lidja, Kim, Myunghee, Kittredge, Richard, Lavoie, Benoı̂t and

Polguère, Alain. 1992. Generation of extended bilingual statistical reports. In
Proceedings of COLING’92, pages 1019–1023, Nantes.

Ivana, Adrian and Sakai, Hiromu. 2007. Honorification and light verbs in Japanese.
Journal of East Asian Linguistics 15(3), 171–191.

Jespersen, Otto. 1946. A modern English grammar on historical principles. Part VI:
morphology.. London: Allen & Unwin.

Kahane, Sylvain. 2003. The Meaning-Text theory. In V. Agel, L. M. Eichinger, H.-
W. Eroms, P. Hellwig, H. J. Heringer and H. Lobin (eds.), Dependenz und Valenz:
Ein internationales Handbuch der zeitgenössischen Forshung/ Dependency and
Valency: An International Handbook of Contemporary Research, volume 1, pages
546–570, Berlin / New York: Walter de Gruyter.

Kahane, Sylvain and Lareau, François. 2005. Meaning-Text Unification Gram-
mar: modularity and polarization. In Proceedings of MTT 2005, pages 163–173,
Moscow.

Kahane, Sylvain and Polguère, Alain. 2001. Formal foundation of lexical functions.
In Proceedings of ACL 2001, Toulouse.

Kaplan, Ronald M. and Bresnan, Joan. 1982. Lexical-functional grammar: a formal
system for grammatical representation. In J. Bresnan (ed.), The Mental Repre-
sentation of Grammatical Relations, pages 173–281, Cambridge, MA: The MIT
Press.

Kim, Jay. 1991. A lexical-functional grammar account of light verbs. Ph.D. thesis,
University of Hawaii.

Kim, Jeong-Ryeol. 1993. Parsing light verb constructions in lexical-functional
grammar. Language Research 29(4), 535–566.

Lareau, François, Dras, Mark, Börschinger, Benjamin and Dale, Robert. 2011.
Collocations in multilingual natural language generation: lexical functions meet
lexical functional grammar. In Proceedings of ALTA’11, pages 95–104, Canberra,
Australia.

Lareau, François and Wanner, Leo. 2007. Towards a generic multilingual depen-
dency grammar for text generation. In Proceedings of Grammar Engineering
Across Frameworks (GEAF’07), pages 203–223, Stanford.

Lareau, François. 2008. Vers une grammaire d’unification sens-texte du français:
le temps verbal dans l’interface sémantique-syntaxe. Ph.D. thesis, Université de
Montréal/Université Paris 7.

LeFrançois, Maxime and Gandon, Fabien. 2011. ILexicOn: toward and ECD-
compliant interlingual lexical ontology described with semantic web formalisms.
In Proceedings of MTT 2011, pages 155–164, Barcelona.

L’Homme, Marie-Claude. 2005. Conception d’un dictionnaire fondamental de
l’informatique et de l’Internet : sélection des entrées. Le langage et l’homme
40(1), 137–154.

Lux-Pogodalla, Veronika and Polguère, Alain. 2011. Construction of a French
lexical network: Methodological issues. In Proceedings of the International

Workshop on Lexical Resources (WoLeR 2011), ESSLLI, pages 55–62, Ljubljana.
Matsumoto, Yo. 1996. A syntactic account of light verb phenomena in Japanese.

Journal of East Asian Linguistics 5(2), 107–149.
Maxwell, John T. and Kaplan, Ronald M. 1993. The interface between phrasal and

functional constraints. Computational Linguistics 19(4), 571–590.
Mel’čuk, Igor. 1973. Towards a linguistic “Meaning-Text” model. In F. Kiefer (ed.),

Trends in Soviet Theoretical Linguistics, pages 33–57, Dordrecht: Reidel.
Mel’čuk, Igor. 1988. Dependency syntax: theory and practice. SUNY series in

linguistics, Albany: State University of New York Press.
Mel’čuk, Igor. 1995. The future of the lexicon in linguistic description and the

Explanatory Combinatorial Dictionary. In I.-H. Lee (ed.), Linguistics in the
morning calm, volume 3, Seoul: Hanshin.

Mel’čuk, Igor. 1996. Lexical functions: a tool for the description of lexical relations
in a lexicon. In Wanner (1996b), pages 37–102.

Mel’čuk, Igor. 1998. Collocations and lexical functions. In A. P. Cowie (ed.), Phrase-
ology. Theory, analysis, and applications, pages 23–53, Oxford: Clarendon.

Mel’čuk, Igor. 2004. Actants in semantics and syntax. I: Actants in semantics.
Linguistics 42(1), 1–66.

Mel’čuk, Igor et al. 1984–1999. Dictionnaire explicatif et combinatoire du français
contemporain. Recherches lexico-sémantiques, volume I–IV. Montréal: Presses
de l’Université de Montréal.

Polguère, Alain. 2000. Une base de données lexicales du français et ses applications
possibles en didactique. LIDIL 21, 75–97.

Seiss, Melanie. 2009. On the difference between auxiliaries, serial verbs and light
verbs. In M. Butt and T. H. King (eds.), Proceedings of LFG’09, pages 501–519,
Trinity College, Cambridge, UK.

Wanner, Leo. 1996a. Introduction. In Wanner (1996b), pages 1–36.
Wanner, Leo (ed.). 1996b. Lexical functions in lexicography and natural language

processing. Amsterdam/Philadelphia: John Benjamins.
Wanner, Leo, Bohnet, Bernd, Bouayad-Agha, Nadjet, Lareau, François and Nicklaß,

Daniel. 2010. MARQUIS: generation of user-tailored multilingual air quality
bulletins. Applied Artificial Intelligence 24(10), 914–952.

Yokota, Kenji. 2005. The structure and meaning of Japanese light verbs. Language
Sciences 27(3), 247–280.

Zarrieß, Sina and Kuhn, Jonas. 2010. Reversing f-structure rewriting for generation
from meaning representations. In Proceedings of the LFG10 Conference, Ottawa.

Žolkovskij, Aleksandr and Mel’čuk, Igor. 1967. O semantičeskom sinteze. Problemy
kibernetiki 19, 177–238.

