
1 
 
 

Word Ordering as a Graph Rewriting Process 

Sylvain Kahane1 and François Lareau2 

1 Modyco, Université Paris Ouest—Nanterre La Défense 
sylvain@kahane.fr 

2 OLST, Université de Montréal 
francois.lareau@umontreal.ca 

Abstract. This paper shows how the correspondence between a unordered dependency tree and a sentence that 
expresses it can be achieved by transforming the tree into a string where each linear precedence link corresponds 
to one specific syntactic relation. We propose a formal grammar with a distributed architecture that can be used 
for both synthesis and analysis. We argue for the introduction of a topological tree as an intermediate step 
between dependency syntax and word order. 

Keywords: dependency grammar • linearization • syntax • polarized unification grammar 

1 Introduction 
Word ordering has been addressed in many formalisms, from Categorial Grammar (CG) and Context Free 
Grammar (CFG), to Tree-Adjoining Grammar (TAG), Lexical Functional Grammar (LFG), Head-driven Phrase 
Structure Grammar (HPSG), Minimalist Program (MP), etc. The early formalisms did not separate linearization 
from sub-categorization. The first formalism to clearly separate them was Generalized Phrase Structure 
Grammar (GPSG) [1] [2]. In grammars that separate linearization rules from the others, the former are generally 
expressed in a different formalism than the latter, and the two kinds cannot combine freely with one another. 
Linearization rules must be precompiled with sub-categorization rules, as in metagrammars for TAG [3], or they 
form a separate module that is applied as a whole before or after other modules. In LFG, the linearization rules 
are CFG rules endowed with functional features describing the correspondence between c- and f-structures [4], 
which cannot be used in other modules of the model [5]. In a constraint-based formalism like HPSG, linear order 
is constrained by features, but its computation is left aside. It is a list of linear precedence statements from which 
linear order must be deduced by external mechanisms [6] [7] [8]. More generally, in phrase structure grammar, 
word order is expressed on constituents but not words: only sister constituents are ordered, and order between 
words must be deduced by extra devices. 

Our first aim in this paper is to propose a general formalism that allows to write both linearization and sub-
categorization rules and to combine them in whatever order, with no implicit procedure. This will allow us to use 
the rules for analysis as well as synthesis, to pre-compile sets of rules from different levels, and to use 
incremental strategies for parsing or generation. It is important to underline that our approach is mathematical 
and not computational: our aim is to propose a rule-based formalism to write modular, declarative grammars, but 
we are not directly interested in procedural strategies. 

Our second aim is to propose a formalism for dependency grammar (henceforth DG). In formal DG, the 
focus has been on valency, sub-categorization, dependency tree generation, and the semantics-syntax interface. 
One of the well-known advantages of DG is that it separates linear order from syntactic structure proper [9] and 
it elegantly captures non-projective syntactic constructions (equivalent to trees with discontinuous constituents in 
phrase-based formalisms). Nevertheless, few efforts have been made on the formalization of word ordering and 
non-projectivity in DG. Formal DGs handling non-projective ordering have been proposed [10] [11] [12], but 
they do not fit our first aim, which is to use the same formalism for linearization and sub-categorization rules. 
Non-projective dependency parsers have been proposed [13], but the grammar cannot be clearly separated from 
the parsing procedure. Meaning-Text Theory (MTT) [14] is a model we want to follow because it is very 
modular and all rules are expressed in similar terms, that is, in terms of correspondence between two levels of 
representation. But although linearization rules have been proposed within MTT [15] [16], a complete 
formalization has never been achieved, especially the treatment of non-projective ordering, which remains 
particularly informal. This paper can be viewed as an attempt to give a clean formalization of MTT’s 
linearization rules. 

Our third aim is to show that language modelling, and in particular word ordering, can be viewed as a graph 
rewriting process. We consider that modelling a natural language consists in associating every uttered string of 
words to its meaning(s), or, conversely, to associate every linguistic meaning to the string(s) of words that 
express it. Our approach to language modelling is strongly influenced by MTT, which posits that the core 
meaning of a sentence can be encoded by a graph representing the predicate-argument relations that exist 
between the meaning of the words (or morphemes) composing it [17]. In other words, language modelling 

François Lareau
Final version of this paper published in:

Foret, Morrill, Muskens, Osswald, Pogodalla (Eds.), Formal Grammar, Springer 2016, pages 216–239.

DOI: 10.1007/978-3-662-53042-9_13



2 
 
 

mainly consists in transforming a semantic graph into a linear graph representing the chain of words (and vice 
versa). Moreover, except where there is no one-to-one correspondence between minimal semantic units and 
minimal expressive units, most linear precedence links between two consecutive words in the spoken chain are 
the image of particular predicate-argument relations. Hence, the correspondence between a semantic graph and a 
string of words mainly consists in moving the edges of the graph until they form a chain. 

2 Natural language modelling and graph rewriting 
Let us consider the following sentence: 

(1) Men from Swaziland often work in mines. 

The text of (1) is a string of words, which can be represented by a linear graph as in Fig. 1. This graph will be 
called linear order in this paper (following [9], [18]). It is similar to the morphological structure of MTT, an 
intermediate level of representation between the surface syntactic structure and the phonological representation. 
Edges of the linear order are called linear precedence links (LPLs) and are labelled with the symbol “<”.  

 
Fig. 1. Linear order of (1) 

The core meaning of (1) can be represented as a semantic graph as in Fig. 2 [14], [17]. In a semantic graph, 
edges are called semantic dependencies and represent predicate-argument relations. The source of a semantic 
dependency is a predicate, and its target is an argument of that predicate. Edges are labelled with a number 
indicating the rank of the argument (1st argument, 2nd argument, etc.), in decreasing order of salience [19]. The 
semantic graph of (1) below expresses the fact that the signified of work is a unary predicate taking the signified 
of men as its first (and unique) argument. The signified of often is also a unary predicate: it takes the signified of 
work as its argument. The signifieds of both locative prepositions from and in are binary predicates taking the 
located entity or event as their first argument and the locus as their second argument. It is also possible to encode 
this graph with an equivalent logical formula, as below [20] [21].  

 
Fig. 2. Semantic representation of (1) 

 
Fig. 3. Correspondence between linear precedence links and semantic dependencies 

Fig. 3 shows the correspondence between the LPLs and the semantic dependencies of (1). The correspondence is 
generally realized in two main stages: 1) a semantics-syntax interface ensuring the lexicalization and the 
hierarchization of the semantic graph, giving a syntactic dependency tree and 2) the linearization and the 
morphologization of the dependency tree, giving a string of words. This paper focuses on linearization. The 
semantics-syntax interface has been described in several papers [14] [22] [23] [24] [25] [26] and will be 
sketched in Section 3.4. The dependency tree of (1) is presented in Fig. 4. 

Men from Swaziland often work minesin

< < < < < <

‘men’

‘from’

‘Swaziland’ ‘often’

‘work’

‘mines’

‘in’

12 1
1

21

x: men
y: Swaziland
z: mines
e: work(x)
often(e)
from(x,y)
in(e,z)

≣

Men from Swaziland often work minesin

< < < < < <

1 2

1

1 1 2



3 
 
 

 
Fig. 4. Syntactic tree of (1) 

A syntactic dependency tree for an n word sentence has exactly n–1 edges, as does its linear order. We will show 
that the edges are in a one-to-one correspondence and that this correspondence can be described by a graph 
rewriting system that moves the edges of the dependency tree to transform it into a string. The rules will be 
written in a formalism called Polarized Unification Grammar (PUG), which was introduced by [27], [28], based 
on previous work by [29] [30] [31] [32]. It has been used for the semantics-syntax interface since [23] but has 
never been really used for word ordering before.1 There are great advantages to using the same formalism for 
different modules of the grammar. A common formalism allows us to use the same grammar both for synthesis 
(producing a string of words from a semantic representation) and analysis (extracting the meaning of a sentence). 
Many strategies are conceivable, including the possibility to pre-compile some groups of rules, the result of such 
pre-compilation being expressed in the common formalism. 

3 Governor-dependent linearization rules 
3.1 Sketch of governor-dependent linearization rules 

We will introduce our approach with a minimalistic example: 

(2) Mary loves Peter 

Fig. 5 shows the dependency tree for this sentence, where Mary is the subject of the verb and Peter its object, 
and the corresponding linear order. 

  
Fig. 5. Syntactic tree and linear order of (2) 

To linearize the dependency tree of (2), we only need to know that in English the subject goes before the verb 
and the object can goes after.2 This can be formalized by saying that a subject dependency corresponds to an 
LPL in the opposite direction, while the object dependency corresponds to an LPL in the same direction.3 Fig. 6 
gives a first sketch of these rules, before introducing our formal framework. 

 
Fig. 6. Sketch of subj and obj governor-dependent linearization rules 

                                                             
 
1 [27,28] showed how to simulate in PUG LFG’s phi-projection, which ensures the linearization process. The resulting 
grammar has not been studied in itself, although a similar grammar was presented in [23]. 
2 Other rules can apply to an object dependency under particular conditions: for instance a wh-word in the object position can 
be placed before the verb, but even for a wh-word it is possible to place it after the verb (cf. so called in situ wh-question: 
Mary loves who?). 
3 Every rule must be read with an epistemic modality: things can happen as per the rule. It comes from the fact that 
alternative rules can a priori apply and things can happen differently. 

men

from

Swaziland

often

work

mines

in
mod

comp

mod

mod

comp

subj

Mary

loves

Peter

objsubj

Mary loves Peter<<

subj

<

obj

<



4 
 
 

Such linearization rules can be used in synthesis (syntactic dependencies become LPLs) as well as in analysis 
(LPLs become syntactic dependencies). For instance, the rules of Fig. 6 say that a LPL between two words can 
correspond to an object dependency in the same direction or a subject dependency in the opposite direction.4 

Linearization rules, which realize the correspondence between syntactic dependencies and linear order, 
constitute the linearization module. The direction in which the linearization rules are used depends on the input 
structure given to this module.5 The dependency tree is at the articulation point between the linearization module 
and the semantics-syntax interface, while the linear order is at the articulation point between the linearization 
module and the phonological module. In other words, the linearization module will be called by one of these two 
other modules: the semantics-syntax interface in synthesis, which gives it a dependency structure as input, or the 
phonological module in analysis, which gives it a linear order as input. 

To ensure that a module has processed the whole input structure, and for modules to call one another, we use 
a unique device: the polarization of objects, which we will now present. 

3.2 Polarized Unification Grammar 

Polarized Unification Grammar (henceforth, PUG) is a fomalism inspired by TAG, where rules are modelled by 
elementary structures that combine to produce the final structure of an utterance. Unlike TAG though, PUG 
handles any kind of graph, and not only trees. PUG considers four kinds of entities: objects, functions, atomic 
values, and polarities. The objects handled by the linearization module are nodes representing words, and edges 
representing syntactic dependencies or LPLs.6 Syntactic dependencies and LPLs are binary edges, which require 
two nodes as their source and target. Edges are bound to their source and target nodes through structural 
functions, which take as their argument an object and return as their value another object. Two other kinds of 
functions are considered in PUG, besides structural functions: labelling functions, that associate an object with 
an atomic value, and polarizing functions, that link an object to a polarity. Fig. 7 shows a fragment of the 
dependency tree of (2) and its formalization when the structural and labelling functions are made explicit. Note 
that the visual representation of edges as arrows is merely a convenient way to indicate that this object has a 
source and a target. Despite this visual metaphor, edges really are objects just like nodes, as Fig. 7 makes 
explicit. 

  
Fig. 7. Making objects and functions explicit 

Polarities indicate whether an object must be consumed by a given module. We consider a lot of polarizing 
functions for our different modules, but we can work with only the same two values for any polarizing function: 
black and white. A black object, i.e., an object with a black polarity for a given function, represents a resource, 
while a white object represents a requirement. An object can receive several polarities through as many 
polarizing functions, generally associated with different modules of the model. When an object has been handled 
by a given module, it is generally black for the polarizing function pertaining to this module, but it will be white 
for the polarizing function pertaining to the next module we want to trigger. In other words, the black polarity is 
neutral, which means that a black object does no longer need to be handled, while the white polarity is non 
neutral, requiring to be saturated by a black polarity. A structure is said to be saturated for a given polarizing 
                                                             
 
4 The fact that the subject relation has a finite verb as governor could be indicated in this rule, but this constraint is already 
verified by the semantics-syntax interface (see Section 3.4) and can also be verified by the syntactic well-formedness 
grammar (see [23]). 
5 We are presenting our grammar in a transductive perspective, where an input structure is given to the grammar and the 
corresponding structure is produced. As we will see in Section 3.6, there are two other ways of considering a correspondence 
grammar: the equative mode, where two structures are given to the grammar and the grammar verifies whether they 
correspond to each other; and the generative mode, where no structure is given to the grammar, which produces couples of 
structures corresponding to each other. 
6 Previous presentations of PUG distinguished the nodes at different levels of representation. It would be possible here too 
and even necessary if we wanted to take into account that in some cases, such as amalgams (ain’t = am + not), some nodes of 
a given level can be merged at another level. Here, we consider that the nodes are the same at the different levels of 
representation and we focus on reordering the graph into a string. 

Mary

loves

subj ≣

lovesMary subj

labellabel label

targetsource
label(1) = Mary
label(2) = subj
label(3) = loves
source(2) = 1
target(2) = 3

≣



5 
 
 

function if the value of this function is neutral for every object of the structure. At the end of the process, the 
derived structure must be saturated for every polarizing function considered. 

An instance of PUG is a finite set of elementary structures, with a subset of initial structures. An elementary 
structure comprises a finite number of objects linked by structural functions (which define the structure proper) 
and associated to a finite number of labels and polarities (by labelling and polarizing functions). Structures 
combine by the unification of at least one object. When two objects are unified, the value of every function 
applying to both objects must be unified too. If the values of a function are atomic values, they must be identical, 
otherwise unification fails. If they are polarities, they combine by a special operation called the product on 
polarities. The white polarity is the identity for the product (white · white = white, white · black = black), while 
the product of two black polarities fails (black · black = �), which means that two black objects cannot be 
unified. A derivation consists in neutralizing the derived structure. The process starts with any elementary 
structure, and at each step a new elementary structure is combined with the structure resulting from the previous 
step. This process can only stop when all the objects are black. Special structures, marked as initial structures 
must be used exactly once.7 

For the linearization process, we will consider three main grammar modules: G_synt is a grammar verifying 
that the syntactic structure is a dependency tree, G_string is a grammar verifying that the linear order is a string 
and G_lin is the linearization module proper. The two first grammars will be presented now. 

3.3 Trees and strings in PUG 

It is very easy to write a grammar that builds only trees in PUG, i.e., to force the derived graphs to be trees. Such 
a grammar has only two rules: an initial rule introducing a black node, and another rule introducing a black 
dependency and a black node as its target.8 This PUG is represented in Fig. 8. The polarity of objects is 
represented by a triangle next to it, white or black according to its value. Rules are placed in square boxes, with 
initial rules in double boxes. 

 
Fig. 8. G_tree, the tree grammar 

The initial rule, which must be used exactly once by definition, introduces the only node that will not be 
governed, i.e., the root of the tree. The connectedness of the structure is ensured by the process itself, which 
requires that each time a rule is used, at least one object is unified with the structure obtained at the previous 
step. The second rule ensures that each node except the root has exactly one governor. 

G_tree can be used as a generative grammar, generating all possible trees. But in our case, G_tree will be 
used as a well-formedness grammar, verifying that a given structure is a tree. It can be applied for instance on 
the syntactic structure of (2) (Fig. 5) to verify that it is a tree. To do so, the whole structure will be polarized in 
white with the polarizing function of the grammar we want to call (cf. the input structure of Fig. 9). After the 
application of G_tree, we obtain a structure entirely black (output structure of Fig. 9), which means that the 
structure has been validated as a well-formed tree. 

  
Fig. 9. Input and output structures for G_tree 

                                                             
 
7 Such a structure can be compared to the initial non-terminal symbol of a CFG. But contrarily to a CFG, we do not impose 
the derivation process to start with an initial structure. Moreover, we accept to have several initial structures, which do not 
increase the generative capacity of the formalism but allows us to write more elegant grammars. 
8 As our objects are not typed, this grammar does not prevent an edge from becoming the vertex of another edge (see [42] for 
such structures, called polygraphs). This can be solved by adding a labelling function to type objects. 

Mary

loves

Peter

objsubj

Mary

loves

Peter

objsubj
⇒



6 
 
 

Applying G_tree to our input structure does not only allow us to verify that it is a dependency tree, but also 
enables us to read the whole input structure and to call other grammars that will apply to it. In our case, we want 
to articulate G_tree with several grammars, in particular G_lin and G_string. For this, we enrich G_synt to 
introduce white polarities from these grammars. Let us represent the polarities of G_lin by diamonds, and the 
ones of G_string by squares.9 The enriched version of G_tree, which we will call G_synt, will force G_lin to 
apply on every syntactic dependency and G_string to apply on every nodes.10 Fig. 10a shows G_synt and Fig. 
10b shows the output structure when G_synt is applied to the syntactic structure of (2). 

a.            b.    

Fig. 10. a. G_synt, a grammar that verifies that every syntactic structure is a tree and calls G_lin and G_string 
b. The output for the syntactic structure of (2) 

It is a little more difficult to write a grammar that builds only strings. The simplest way is to use two tree 
grammars, and to verify that the structure is a tree if we read it in both directions. To couple two grammars and 
force them to apply on the same structure, we just need to add, on each object of each elementary structures of 
each grammar, a white polarity of the other grammar. These white polarities call the other grammar and ensure 
that every object has been handled by both grammars. Fig. 11 shows two tree grammars coupled together. In 
order to distinguish the polarity pertaining to each grammar, we use an upward triangle for the polarity 
pertaining to the first tree grammar and a downward triangle for the polarity pertaining to the second grammar. 

 
Fig. 11. G_string (first view: two tree grammars coupled together) 

After being coupled, the two tree grammars of Fig. 11 form a single grammar. The rules of the coupled grammar 
can be used in whatever order, despite the fact that they originally come from two different grammars. This 
property illustrates one of the major advantages of polarities, which allows to couple different modules in a same 
model without introducing procedural constraints on the order in which the different modules must be triggered. 

It is possible to simplify the previous coupled grammar, because both rules involving an edge must apply on 
each edge and can be pre-combined. The resulting grammar is given in Fig. 12. 

 
Fig. 12. G_string (second view: pre-combined edge rules) 

It is also possible to merge the two polarizing functions. The resulting polarizing function has four possible 
values: (black, black), (black, white), (white, black), and (white, white). The polarities (black, white) and (white, 
black) are two opposite polarities, which, combined together, give (black, black), the neutral polarity, indicating 
that an object is saturated. In previous publications, these polarities have been called positive and negative [31] 

                                                             
 
9 Saying that “the polarities of G_lin are represented by diamonds” is a convenient way to express two things: 1) we consider 
a new polarizing function, and we use diamonds as a visual convention to represent values of this function; 2) this polarizing 
function is the one of G_lin because it is mainly rules of G_lin that attribute black polarities as values to this function. But of 
course this polarizing function is used in rules of all grammars that are articulated with G_lin. For these grammars, these 
polarities are articulation polarities [23]. 
10 We could have introduced less (or more) white polarities. Adding diamond polarities on edges to call G_lin is sufficient. 
Adding white square polarities on nodes allows us to relax the constraints on possible procedures to trigger our different 
grammars. With its white square polarities on nodes, G_synt calls G_string, which allows us to trigger G_string before G_lin. 

Mary

loves

Peter

objsubj



7 
 
 

[27] [28]. Fig. 13 shows G_string after merging the polarizing function. Positive and negative polarities are 
represented by + and – signs in squares, and (black, black) is represented by a black square. 

 
Fig. 13. G_string (third view: polarizing functions merged) 

Finally, G_string will be articulated with G_lin and G_synt to be applied to the output of these grammars, so that 
it triggers them and it is triggered by them, so that the output of one module becomes the input of another. Fig. 
14 presents the resulting grammar, where triangle and diamond polarities pertaining to, respectively, G_lin and 
G_synt have been added. 

 
Fig. 14. G_string (fourth view: articulated with G_lin and G_synt) 

Note that as soon as the polarities have been added, it is no longer necessary to add the label “<” to distinguish 
LPLs from syntactic dependencies. The polarities suffice: an edge with a triangle polarity is an edge that must be 
handled by G_synt, that is, a syntactic dependency, while an edge with a square polarity is an edge that must be 
handled by G_string, that is, an LPL.11 

3.4 Sub-categorization rules and semantics-syntax interface 

PUG was initially introduced for writing DGs producing unordered dependency trees [26] [29] [32]. Fig. 15 
shows G_sem-synt, a grammar that generates the dependency tree of (1), on semantic grounds. The grammar 
here is simplified to show only syntactic edges, and morphosyntax (i.e., inflection) is not considered. See [23] or 
[26] for a more detailed grammar. 

 
Fig. 15. G_sem-synt, a dependency grammar for (1) 

The rule introducing work specifies that it is an intransitive verb with only one semantic argument, its subject. 
The polarities for G_sem-synt are represented by pentagons. White syntactic polarities are added to black 
pentagons in order to call G_tree. Two labelling functions for nodes are considered: one has a word as value, the 
other its category, written between parentheses here. The rule for work introduces three objects. It says that work 
is of category V and has a subject dependent. The node work and the subj dependency are resources produced by 
the rule (they have black pentagons), while the dependent node of category N is a requirement. This need will be 
filled by the unification with the elementary structure for men, which is a black node of category N. The rule for 
the preposition in says that in is a preposition that needs a V as governor and an N as dependent. In other words, 
the elementary structure for in will adjoin on works. Prepositions in and from are binary predicates. The adverb 
often is a unary predicate modifying its only argument. Nouns in this sentence have no arguments. 
                                                             
 
11 To some extent, it is not even necessary to separate syntactic edges and LPLs. A same edge can be both and bear 
simultaneously a triangle and a square polarity, exactly as a node can be both a syntactic node and a node of the linear order. 
It is viewed as a syntactic object when the triangle polarity is handled and as a morphological object when the square polarity 
is handled. In this paper, edges are moved from node to node and a syntactic dependency can have a different source and 
target than its corresponding LPL. But we can also understand the process as a move of nodes from edges to edges. In some 
sense, every edge we consider has two faces: a semantic one (represented here by the syntactic dependency) and a 
morphological one (represented by an LPL). They describe constructions, that is, linguistic signs with a signified (the 
semantic face) and a signifier (the morphological face). 

(N)

work(V)

subj

men(N)

mines(N)

Swaziland(N) (N)

in(P)
comp

(V)
mod

(N)

from(P)
comp

(V)
mod

often(Adv)

(V)

mod



8 
 
 

It is important to note that G_sem-synt does not force the derived structure to be a tree. This condition is 
often verified by a hidden procedural device (as in [29] or [32]). In PUG, this is made explicit by forcing the tree 
grammar G_tree to apply on the syntactic part of the structure. 

3.5 Governor-dependent linearization rules 

Sketches of the two rules needed to linearize sentence (2) were introduced in Fig. 6. To include these rules in 
PUG we must decide which objects in these rules are resources and which are requirements. Let us call G_lin the 
linearization grammar that includes these rules. It is a correspondence grammar, like G_sem-synt (Section 3.4), 
as it puts in correspondence two structures, the syntactic tree and the linear order. Hence, we propose that G_lin 
produces both structures. Moreover, it calls G_synt to verify that the syntactic part of the structure is a tree, and 
G_string to verify that the corresponding order is a string. We obtain the rules in Fig. 16, where the values of the 
polarizing function pertaining to G_lin are represented by diamonds. Syntactic dependencies receive a black 
diamond and a white triangle, to trigger G_synt, while LPLs receive a black diamond and a white square, to 
trigger G_string. We consider that nodes are not handled by G_lin and are just not polarized.12 

 
Fig. 16. Governor-dependent linearization rules of G_lin 

3.6 Architecture of the model and procedure 

The three grammars we have introduced, G_synt, G_string and G_lin, call one another. This illustrates the fact 
that PUG can formalize complex architectures and is not restricted to pipeline architectures where modules form 
a chain. PUG has the advantage of not forcing any procedure.13 

In fact, our three grammars are now gathered in only one grammar, which we call G_synt × G_lin × 
G_string. The three grammars are still visible as three modules of our combined grammar, but we do not need to 
separate them. Elementary trees of the three grammars can be triggered in whatever order we want. In particular, 
the combined grammar is reversible and can be used for both synthesis and analysis. In synthesis, G_synt is 
triggered first to verify that the input structure is a dependency tree, then G_lin associates a linear order to it, and 
finally G_string verifies that the output is a string. In analysis, the reverse occurs: G_string is triggered first, 
calling G_lin for the correspondence, and G_synt verifies the well-formedness of the output.  It is also possible 
to trigger G_synt and G_string first, and only then verify that the generated tree and string are compatible via 
G_lin. It is as well possible to mix the grammars and to alternate rules of the different modules. For instance, we 
can use the grammar for incremental parsing by building the syntactic tree edge by edge as we are consuming 
the string. Whatever order we choose, the polarization ensures that, if we obtain a neutral structure at the end, we 
will have a tree and a string corresponding to each other by our linearization rules and that the three modules of 
the grammar have been applied. 

There are three main ways to use a correspondence grammar such as G_lin or G_synt × G_lin × G_string 
[33]. First, the grammar can be used as a purely generative process, building couples of trees and strings 
corresponding to one another, from scratch. In our case, the grammar will be used in a transductive way, 
transforming a tree into a string, or a string into a tree. In these cases, the process starts with one of the two 
structures. To trigger the grammar, this input structure is polarized in white: with the white polarity of G_string 
if we suppose that it is a string, and with the white polarity of G_synt if we suppose that it is a dependency tree. 
The “transduction” of the input structure into another one will be automatically achieved by the need to 
neutralize it. There is a third way to use the grammar: the equative way. In this case, a couple of structures is 
considered and the grammar will verify that they are a tree and a string and that they correspond to each other by 
trying to neutralize both of them. [14] said that a Meaning-Text model “is by no means a generative or, for that 
                                                             
 
12 In [28], such objects received a neutral grey polarity that was the identity for the product on polarities, which is equivalent 
to having no polarity. 
13 It must nevertheless be noted that the space of possible procedures is controlled by the articulation polarities we add in the 
rules of each grammars. In this presentation we chose to leave open a maximum number of possibilities: each time an object 
in a rule can be handled by another grammar, we add an articulation polarity to call this grammar. But it is possible to restrict 
the use of articulation polarities in order to have a pipeline architecture. 

subj obj



9 
 
 

matter, transformational system: it is a purely EQUATIVE (or translative) device” (p. 45). But in fact, 
correspondence grammars, like modules of MTT, can be used in all three modes—equative, transductive, and 
generative. In particular, our correspondence grammars are reversible and can be used for synthesis as well as 
analysis. 

4 Linearization module 
The linearization grammar presented so far is not sufficient to order all dependency trees. Our first linearization 
module (Section 3.5) contained only governor-dependent linearization rules, i.e., rules specifying the position of 
a node in relation to its governor. A second set of rules is needed to position co-dependents in relation to each 
other (Section 4.1). A third set of rules propagates LPLs to nodes that are not in a so close relation in the 
dependency tree (Section 4.2). Non-projective orders will be studied in Section 5. 

4.1 Co-dependent linearization rules 

Let us take an example: 

(3) Mary often works. 

a.              b.    

Fig. 17. a. Dependency tree    b. linear order of (3) 

Fig. 17 shows the dependency tree and linear order of (3). The subject (Mary) and the modifier (often) are both 
on the left of their governor (works), but the subject must be before the modifier. The subject dependency 
between Mary and works now corresponds to a LPL between Mary and often. This means that we need a 
linearization rule involving these three nodes—Mary, works, and often—and both syntactic dependencies—subj 
and mod. This is the first rule in Fig. 18. It associates the subj dependency with an LPL between two co-
dependents. Both edges are built by this rule, and thus have a black diamond polarity, while the mod dependency 
has a white diamond polarity because it will be associated with an LPL by another rule. This latter rule is the 
second in Fig. 18. It has category constraints and only applies to an adverb (Adv) modifying a verb (V). 

 
Fig. 18. The subj-mod co-dependent and the mod governor-dependent linearization rules of G_lin 

Fig. 19 shows the application of these two rules for (3). The output structure contains a dependency tree and a 
linear order. Dependencies have a white triangle polarity calling G_synt and LPLs have a white triangle polarity 
calling G_string. The structure is presented twice: once with a dependency tree-based layout (Fig. 19a), the other 
with a linear order-based layout (Fig. 19b). Let us emphasize that the two schemata are just different views of 
the exact same graph. 

a.            b.   

Fig. 19. Syntactic dependencies and LPLs of (3) after application of G_lin 

The subj governor-dependent linearization rule of Fig. 18, placing the subject before the verb, is still needed 
because the adverb can be absent. If this rule is applied to the syntactic tree of (3) instead of the subj-mod co-
dependent linearization rule, we will obtain a structure that is not a string and will be rejected by G_string. 

The grammar presented here only handles the linearization of what we will call direct projections. The direct 
projection of a node x in a dependency tree is the node itself and its direct dependents. For instance, the direct 

Mary

works

often

modsubj
Mary works often

< <

(V)

(Adv)

modsubj

(Adv) (V)

mod

Mary

works

often

modsubj

Mary oftenworks

modsubj



10 
 
 

projection of works in (1) is men often work in. We will see in Section 4 how to propagate the LPLs between the 
words of the direct projections to the whole set of nodes. Before that, we will see how to homogenize the rules 
used to order direct projections. 

4.2 Propagation and projectivity 

After applying governor-dependent and co-dependent linearization rules on the dependency tree of (1), we 
obtain the structure in Fig. 20. In this figure, we only kept the articulation polarities: triangle polarities for 
syntactic dependencies and square polarities for LPLs (the diamond polarities are all black). As before, this 
structure is presented twice, in a dependency tree-based layout (Fig. 20a) and in a linear order-based layout (Fig. 
20b).  

a. b.  

Fig. 20. Syntactic dependencies and LPLs of (1) after application of G_lin 

As we can see, we cannot obtain a string with the application of only governor-dependent and co-dependent 
linearization rules. We know that men is before its dependent from and its co-dependent often, but we do not 
know the relative order of from and often, and this order cannot be computed by our current G_lin, because from 
and often are in an “aunt-niece” relation in the dependency tree, and G_lin covers only governor-dependent (i.e., 
mother-daughter) and co-dependent (i.e., sister) relations. 

To obtain the complete linearization of the dependency tree, we must use a property of the correspondence 
between a dependency tree and a linear order: projectivity. There are several equivalent definitions of 
projectivity. The definition we use, stated by [34], who coined the term projectivity, is based on the notion of 
projection. The maximal projection of a node is the set formed by the node itself and all the nodes it dominates 
(directly or indirectly) in the dependency tree. A linearly ordered tree is projective if and only if the maximal 
projection of every node of the dependency tree is continuous in the linear order. 

A consequence of projectivity is that, if a node x is before a node y that is not in the projection of x, then the 
whole projection of x is before y and, in particular, every dependent of x is before y. This property (and the 
symmetric property where x is after y) can be translated into a rule (Fig. 21). This rule says that any LPL from a 
node x to a node y can be replaced by an LPL from any dependent of x to y. The LPL between x and y receives a 
black square polarity, which means that it can no longer be covered by G_string, while the new LPL that 
replaces it receives a white square polarity and is active for G_string. In analysis, the rule is read in the reverse 
order: any LPL from a node z to a node y can be replaced by an LPL from the governor of z to y. The former 
LPL receives a black diamond polarity and is no longer active for G_lin, while the new LPL that replaces it 
receives a white diamond polarity and is active for G_lin. The white triangle polarity between the sources of the 
two LPLs of rules of Fig. 21 forces these two nodes to be linked by a syntactic dependency (which will be 
neutralized by G_synt). 

 
Fig. 21. Propagation rules of G_lin 

Propagation rules propagate LPLs downwards in synthesis and upwards in analysis. Fig. 22 shows their 
application in synthesis for a fragment of the structure in Fig. 20. The first rule of Fig. 21 is applied twice to 
propagate the LPL between men and often to from and then to Swaziland. The output is a string and will be 
saturated (i.e., accepted) by G_string. 

men

work

in

modsubj

minesfrom

Swaziland

mod

comp

comp

mod

often

men work in

mod

subj

minesfrom Swaziland

mod
comp compmod

often



11 
 
 

 
Fig. 22. Application of propagation rules on the structure of (1) 

Let us make a remark about the set of LPLs built by our grammar. Order is a transitive relation. From a 
computational point of view (and certainly also from a cognitive point of view), it is not necessary to grasp all 
the LPLs that a linear order implies. As we see here, we need mainly to consider immediate LPLs, i.e., LPLs 
between two successive words, and some other LPLs that result from the propagation of immediate LPLs. Thus, 
propagation is a kind of transitivation of linear order, but highly constrained by syntactic structure. 

The previous remark is illustrated by Fig. 23, which shows the application of the linearization module for the 
analysis of (1). The input structure is the string of words, which contains only immediate LPLs (cf. Fig. 1). The 
application of G_string introduces white diamond polarities on immediate LPLs, which call G_lin (Fig. 23a). 
After applying all the rules of G_lin that can neutralize a white diamond polarity now, we obtain the structure in 
Fig. 23b. Only one LPL has not been neutralized, the LPL from Swaziland to often. Neither governor-dependent 
nor co-dependent linearization rules can be triggered on this LPL. But this LPL can be propagated, producing the 
configuration in Fig. 23c, on which the subj-mod co-dependent linearization rule can now apply, producing the 
output structure in Fig. 23d. This structure contains the whole dependency tree. 

a.   
 

b.   
 

c.   
 

d.    

Fig. 23. Application of the linearization module for the analysis of (1) 

Propagation rules can only produce a projective structure and they suffice to linearize any output of governor-
dependent and co-dependent rules. They would apply to co-dependents if we did not take necessary precautions. 
In fact, any co-dependent linearization rule is the combination of a governor-dependent linearization rule and a 
propagation rule, as shown in Fig. 24. When the relative order of two co-dependents is free, it can be realized by 
propagation rules, but when it is not free, then propagation rules must be blocked. This could be done by adding 
a special feature to the LPL introduced by a governor-dependent rule, as well as the LPL consumed by a 
propagation rule. In other words, the two LPLs that unify in Fig. 24 would need to have a different value for this 
special feature (not represented here) if we wanted to block this unification. 

men

from

Swaziland

mod

comp

often men

from

Swaziland

mod

comp

often

⇒

men work in minesfrom Swaziland often

men work in minesfrom Swaziland often

mod comp compcompmod

men work in minesfrom Swaziland often

mod comp compcompmod

men work in minesfrom Swaziland often

mod comp compcompmod
subj



12 
 
 

 
Fig. 24. Co-dependent linearization rules as combinations of governor-dependent linearization and propagation rules 

5 Emancipation 
Non-projective correspondence between a dependency tree and linear order is common in natural language. In 
English, it is illustrated by so-called extraction phenomena, like the anteposition of a complement governed by a 
subordinate verb outside the subordinate clause (cf. sentence (4) and its linearized dependency tree in Fig. 25). 

(4) To Mary Peter thinks we should not speak again. 

 
Fig. 25. Non-projective linearized dependency tree of (4) 

Such sentences are quite frequent in German, because the first element of a sentence can easily be the dependent 
of a subordinate verb, as illustrated in (5) (see Fig. 26a,b). 

(5) Das Buch hat  diesem Mann  niemand  zu lesen  versprochen 
theACC book  has  thisDAT man  nobodyNOM  to read  promised  
‘Nobody promised this man to read the book’ 

In almost any formalism, non-projective structures are solved by the raising of problematic elements in the 
syntactic structure. This is achieved by similar devices in all theories: movements in Generative Grammar (Move 
α  [35]), non local features in HPSG (the slash feature [36]), functional uncertainty in LFG [37], etc. In DG, the 
problem can be solved by raising problematic elements in the syntactic dependency tree [10] [38] [39]. The idea 
underlying raising in all of these frameworks is that non-projectivity occurs when an element is not positioned in 
relation with its direct governor, but one of its indirect governors. For instance, in (4), to Mary is not positioned 
in relation to its governor speak, but to thinks, the main verb. In (5), das Buch ‘the book’ is not positioned in 
relation to its governor zu lesen ‘to read’, but to hat ‘has’, the main verb (Fig. 26). 

 b.  
 

c.  

Fig. 26. a. The dependency tree of (5)     b. Its non-projective linearization    c. The corresponding projective topological tree 

There are different ways to control raising. In Generative Grammar, the movement is constrained by 
syntactic categories: some syntactic constituents are “islands” and it is not possible to cross their boundaries (see 
[40] for a first description of island constraints). In LFG or traditional DG, the constraints are expressed in terms 
of syntactic functions: the chain of syntactic dependencies between the raised element and the ancestor that 
“hosts” it in the linear order is constrained by the nature of their syntactic functions [14] [15]. 

In this paper we adopt a third solution: the topological model. This model has been developed during the 19th 
century for the description of word order in German and has been formalized in HPSG [41] and DG [11] [12]. It 
elegantly models the fact that German is a V2 language (the main verb of a declarative sentence always occupies 
the second position), with a verb cluster at the end of the sentence, possibly followed by some extraposed heavy 

subj
subj

⊕ =

To Mary Peter thinks we notshould speak again

niemand hat versprochen

aux

subj

zu lesendiesem Mann

iobj

dobj
dobj

das Buch 

niemand hat versprochen

rb
mf

zu lesendiesem Mann

mf of
vf

das Buch 

niemand ‘nobody’

hat ‘has’

versprochen ‘promised’

auxsubj

zu lesen ‘to read’ diesem Mann ‘thisDAT man’

iobjdobj

dobj

das Buch ‘theACC book’

a. 



13 
 
 

constituents. This is modeled by decomposing German sentences into five fields (Vorfeld, left bracket, 
Mittelfeld, right bracket, and Nachfeld = vf, lb, mf, rb, and nf), with the following conditions: the main verb 
goes in the left bracket, the other verbs in the right bracket, one constituent in the Vorfeld, the others in the 
Mittelfeld, and some heavy constituents in the Nachfeld. In the verb cluster, each verb is placed to the left of its 
governor, in a field called the Oberfeld (of). Noun phrases cannot be placed in the verb cluster and are placed 
between the main verb and the verb cluster. If they depend on a verb in the verb cluster, they must emancipate 
and go in one of the major fields (Vorfeld, Mittelfeld, or Nachfeld). 

In (5), the main verb is the finite auxiliary hat ‘has’, which must be in second position, in the left bracket. Its 
verbal dependent, the participle versprochen ‘promised’, is placed in the right bracket, where it forms a verb 
cluster accommodating its verbal dependent zu lessen ‘to read’. The noun phrases of these two verbs cannot be 
placed in the verb cluster and will be emancipated to be placed in fields opened by the main verb: das Buch ‘the 
book’ goes in the Vorfeld, while diesem Mann ‘to this man’ is placed in the Mittelfeld, where it joins the subject 
niemand ‘nobody’ and can be ordered freely in relation to it.  

The topological structure can be represented by a constituent structure as in [12] or by a dependency tree as 
in [11]. This second representation is adopted here (Fig. 26c). The topological tree is added as an intermediate 
structure between the syntactic tree and linear order. This new structure receives its own polarity, represented by 
a downward triangle ( ), to be contrasted with the upward triangle ( ) of syntactic trees. The diamond ( ) is 
still used for the linearization module, which now ensures the correspondence between the topological tree and 
linear order, but uses the same rules as the ones described in previous sections, because the topological tree 
corresponds to the linear order projectively. A new polarity, represented by a circle ( ), is introduced for the 
syntax-topology interface, which ensures the correspondence between the syntactic tree and the topological tree. 
Fig. 27 summarizes the architecture of the grammar with all the polarities: those pertaining to the well-
formedness grammars ( , , ) and those pertaining to the interfaces ( , , ).14 

 
Fig. 27. The modules and their polarities 

The rules of the syntax-topology interface are very similar to the rules of the linearization module: the majority 
are correspondence rules associating a syntactic edge to a topological edge. The other rules resolve mismatches 
between the two structures. For the linearization module, they are propagation rules. For the syntax-topology 
interface, they are emancipation rules, which are very similar to propagation rules.15 Fig. 28 shows examples of 
different rules used in the syntax-linear order correspondence: the first two transform a syntactic aux edge into a 
topological rb edge (allowing the dependent of the auxiliary to go in the right bracket) and a syntactic dobj into a 
topological vf (allowing a direct object to go in the Vorfeld); the next rule is an emancipation rule lifting a vf and 
allowing a node placed in the Vorfeld to emancipate from the right bracket (note that the lower vf is only visible 
for the syntax-topology interface, while the upper vf is only visible for the topological well-formedness module, 
as shown by their polarities); the following rules are topological well-formedness rules verifying that the 
topological structure is a tree and the Vorfeld is in the main domain; the last rules are linearization rules placing 
the Vorfeld to the left and the right bracket after the Mittelfeld, as well as a propagation rule. 

                                                             
 
14 We have not developed the semantics-syntax interface nor introduced a convention for the semantic polarity in this paper. 
15 The semantics-syntax interface also contains mismatch rules for phenomena such as raising (Peter seems to sleep),  
auxiliaries (I will read), tough-movement (a paper hard to read), or extraction (a paper I would like to read). See [32] [26] 
[25]. 

Semantics Syntax Topology Linear order

⇔ ⇔ ⇔

not discussed



14 
 
 

  
Fig. 28. Rules of syntax-topology-linear order correspondence  

The application of syntax-topology correspondence rules produces a copy of the syntactic tree where the node 
and edge labels have changed. The application of the emancipation rules lifts some edges (Fig. 29). The 
emancipation could have been done directly in the syntactic tree, but the advantage of relabelling the tree in the 
syntax-topology is to have to different grammar for the well-formedness of the syntactic tree and the topological 
tree. 

 
Fig. 29. The syntax-topology interface applied on the trees of (5) 

A more complete topological model for German can be found in [12]. 

6 Conclusion 
This paper pursued several goals: showing that linearization can be seen as a graph rewriting process, showing 
that each LPL corresponds to a syntactic dependency and that the path between the two can be traced, and 
formalizing the linearization module in a modular, declarative formalism, allowing to combine it with other 
modules of a linguistic model.  

The paper gives a large overview of Polarized Unification Grammar. The formalism is well adapted to 
writing grammars that generate various structures, such as strings, trees, and graphs, and correspondence 
grammars between such structures. Polarization allows us to split the model into small modules articulated with 
one another, and to maintain a distributed architecture where every module calls the other modules to handle the 
same structures. PUG also allows us to deal with node expansions, which has not been developed here. 

From a theoretical point of view, this paper proposes a linguistic model with several levels of representation, 
including a syntactic level where the structure is an unordered dependency tree. The choice of dependency trees 
for the representation of syntax is supported by two arguments. First, it elegantly interfaces with both semantics 
and linear order, including non-projective orders. Second, there is a one-to-one correspondence between the 
syntactic dependencies and the linear precedence links between couples of successive words, and this 
correspondence can be exploited in various ways, in particular to predict prosodic breaks. 

From a formal point of view, we have a quite complex architecture, but the articulation between the different 
modules is ensured by a single mechanism (polarization), which allows us to control rule combination. This is 
done without imposing any order on the combination of rules, thus preserving a distributed architecture. The 
typology of the rules we introduce is also quite simple. We have well-formedness rules verifying that the 

aux rb

dobj vf

rb

vf

vf

[md]

vf

[vc]

rb

vf

rbmf

N1

V1

V2

auxsubj

V3
N3

iobjdobj

dobj

N2

N1

V1

V2

rbmf

V3
N3

mfof

vf

N2

⇒
correspondence

N1

V1

V2

rbmf

V3

N3

mf

of

vf

N2

em
ancipation

⇒



15 
 
 

structure is well-formed (for instance that it is a tree or a string), correspondence rules transforming a structure in 
another one, and propagation/emancipation rules in case of mismatches. 

We did not address the implementation of PUG. In fact, we tried to underspecify procedure as much as 
possible. Our grammar allows various processing chains, and it was not our purpose to decide which procedure 
is better for synthesis or parsing. On the order hand, our grammar is very precise on which word order 
specification must be computed to linearize a dependency tree. We showed that we only need to consider LPLs 
between successive words, between nodes linked by a syntactic dependency, and between all couples of words 
that propagation rules may go through. Although no procedure is given, the set of objects that any procedure 
would have to handle and the set of elementary operations that must be triggered is clearly delimited. Moreover, 
the word order we produce is explicit (it is a linear graph on words). 

References 

1. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistics Inquiry 12(1), 155–184 (1981) 
2. Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalized Phrase Structure Grammar. Harvard University Press, 

Cambridge (1985) 
3. Candito, M.-H.: A principle-based hierarchical representation of LTAG. In : Proceedings of Coling, 

Copenhagen (1996) 
4. Kaplan, R., Bresnan, J.: Lexical-Functional Grammar: A Formal System for Grammatical Representation. In 

Bresnan, J., ed. : The Mental Representation of Grammatical Relations. The MIT Press, Cambridge (1982) 
173–281 

5. Bresnan, J.: Lexical-Functional Syntax. Blackwell, Malden (2001) 
6. Andreas, K.: Linerarization-based German Syntax. Ph.D. thesis, Ohio State University (1995) 
7. Richter, F., Sailer, M.: Remarks on Linearization. Reflections on the Treatment of LP-Rules in HPSG in a 

Typed Feature Logic. Master's dissertation, Eberhard-Karls-Universität, Tübingen (1995) 
8. Müller, S., Kasper, W.: HPSG analysis of German. In : Verbmobil: Foundations of Speech-to-Speech 

Translation. Springer, Berlin (2000) 238–253 
9. Tesnière, L.: Éléments de syntaxe structurale. Klincksieck, Paris (1959) 
10. Kahane, S., Nasr, A., Rambow, O.: Pseudo-projectivity: a polynomially parsable non-projective dependency 

grammar. In : Proceedings of Coling-ACL, Montreal, pp.646–652 (1998) 
11. Duchier, D., Debusmann, R.: Topological dependency trees: a constraint-based account of linear precedence. 

In : Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, Toulouse, 
pp.180–187 (2001) 

12. Gerdes, K., Kahane, S.: Word order in German: a formal dependency grammar using a topological hierarchy. 
In : Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL-01), 
Toulouse, pp.220–227 (2001) 

13. Kuhlmann, M., Nivre, J.: Transition-based techniques for non-projective dependency parsing. Northern 
European Journal of Language Technology 2(1), 1–19 (2010) 

14. Mel'čuk, I.: Dependency syntax: theory and practice. State University of New York Press, Albany (1988) 
15. Mel'čuk, I., Pertsov, N.: Surface Syntax of English: A Formal Model Within the Meaning-Text Framework. 

John Benjamins, Amsterdam (1987) 
16. Iordanskaja, L., Mel’čuk, I.: Ordering of Simple Clauses in an English Complex Sentence. Rhema(4), 17–59 

(2015) 
17. Mel’čuk, I.: Semantics: From Meaning to Text 1. John Benjamins, Amsterdam (2012) 
18. Tesnière, L.: Elements of structural syntax. John Benjamins, Amsterdam (2015) 
19. Mel'čuk, I.: Actants in Semantics and Syntax I: Actants in Semantics. Linguistics 42(1), 1–66 (2004) 
20. Kahane, S.: Dependency and Valency: An International Handbook of Contemporary Research. Walter de 

Gruyter, Berlin (2003) 
21. Copestake, A.: Slacker semantics: why superficiality, dependency and avoidance of commitment can be the 

right way to go. In : Proceedings of the 12th Conference of the European Chapter of the Association for 
Computational Linguistics, Athens, pp.1–9 (2009) 

22. Kahane, S., Mel'čuk, I.: Synthèse des phrases à extraction en français contemporain (du réseau sémantique à 
l'arbre syntaxique). Traitement Automatique des Langues 40(2), 25–85 (1999) 

23. Kahane, S., Lareau, F.: Meaning-Text Unification Grammar: modularity and polarization. In : Proceedings 



16 
 
 

of the Second International Conference on Meaning-Text Theory, Moscow, pp.163–173 (2005) 
24. Lareau, F.: Vers une grammaire d'unification Sens-Texte du français: le temps verbal dans l'interface 

sémantique-syntaxe. Ph.D. thesis, Université de Montréal / Université Paris 7 (2008) 
25. Lareau, F.: Le temps verbal dans l'interface sémantique-syntaxe du français. In : Proceedings of the Fourth 

International Conference on Meaning-Text Theory, Barcelona (2009) 
26. Kahane, S.: Predicative Adjunction in a Modular Dependency Grammar. In : Proceedings of the 2nd 

international conference on Dependency Linguistics (DepLing), Prague, pp.137–146 (2013) 
27. Kahane, S.: Grammaires d'Unification Polarisées. In : Actes de la 11ème conférence sur le Traitement 

Automatique des Langues Naturelles, Fès, pp.233–242 (2004) 
28. Kahane, S.: Polarized Unification Grammars. In : Proceedings of the 21st International Conference on 

Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, 
Sydney, pp.137–144 (2006) 

29. Nasr, A.: A formalism and a parser for lexicalized dependency grammars. In : 4th International Workshop on 
Parsing Technologies, Prague, pp.186–195 (1995) 

30. Perrier, G.: Interaction grammars. In : Proceedings of the 18th International Conference on Computational 
Linguistics, Saarbrücken, pp.600–606 (2000) 

31. Duchier, D., Thater, S.: Parsing with tree descriptions: a constraint-based approach. In : Proceedings of the 
Sixth International Workshop on Natural Language Understanding and Logic Programming (NLULP), Las 
Cruces, NM, pp.17–32 (1999) 

32. Kahane, S.: A fully lexicalized grammar for French based on Meaning-Text Theory. In : Proceedings of 
Cicling: Computational Linguistics and Intelligent Text Processing, Mexico, pp.18–31 (2001) 

33. Sylvain, K.: Des grammaires formelles pour définir une correspondance. In : Actes de la 7e conférence 
annuelle sur le Traitement Automatique des Langues Naturelles (TALN), Lausanne (2000) 

34. Lecerf, Y.: Une représentation algébrique de la structure des phrases dans diverses langues natuelles. 
Comptes Rendus de l’Académie des Sciences de Paris 252, 232–234 (1961) 

35. Chomsky, N.: The Minimalist Program. The MIT Press, Cambridge (1995) 
36. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. CSLI, Stanford (1994) 
37. Kaplan, R., Zaenen, A.: Long-distance dependencies, constituent structure, and functional uncertainty. In 

Baltin, M., Kroch, A., eds. : Alternative Conceptions of Phrase Structure. Chicago University Press, Chicago 
(1989) 17–42 

38. Bröker, N.: Unordered and non-projective dependency grammars. Traitement Automatique des Langues 
41(1), 245–272 (2000) 

39. Hudson, R.: Discontinuity. Traitement Automatique des Langues 41(1), 15–56 
40. Ross, J.: Constraints on Variables in Syntax. Ph.D. thesis, MIT, Cambridge, MA (1967) 
41. Kathol, A.: Linerarization-based German Syntax. Ph.D. thesis, Ohio State University (1995) 
42. Kahane, S., Mazziotta, N.: Syntactic polygraphs: A formalism extending both constituency and dependency. 

In : Proceedings of the 14th Meeting on the Mathematics of Language, Chicago, pp.152–164 (2015) 
 
 


